Matches in SemOpenAlex for { <https://semopenalex.org/work/W2810984579> ?p ?o ?g. }
- W2810984579 endingPage "12" @default.
- W2810984579 startingPage "1" @default.
- W2810984579 abstract "Character rigs are procedural systems that compute the shape of an animated character for a given pose. They can be highly complex and must account for bulges, wrinkles, and other aspects of a character's appearance. When comparing film-quality character rigs with those designed for real-time applications, there is typically a substantial and readily apparent difference in the quality of the mesh deformations. Real-time rigs are limited by a computational budget and often trade realism for performance. Rigs for film do not have this same limitation, and character riggers can make the rig as complicated as necessary to achieve realistic deformations. However, increasing the rig complexity slows rig evaluation, and the animators working with it can become less efficient and may experience frustration. In this paper, we present a method to reduce the time required to compute mesh deformations for film-quality rigs, allowing better interactivity during animation authoring and use in real-time games and applications. Our approach learns the deformations from an existing rig by splitting the mesh deformation into linear and nonlinear portions. The linear deformations are computed directly from the transformations of the rig's underlying skeleton. We use deep learning methods to approximate the remaining nonlinear portion. In the examples we show from production rigs used to animate lead characters, our approach reduces the computational time spent on evaluating deformations by a factor of 5X-10X. This significant savings allows us to run the complex, film-quality rigs in real-time even when using a CPU-only implementation on a mobile device." @default.
- W2810984579 created "2018-07-10" @default.
- W2810984579 creator A5001740205 @default.
- W2810984579 creator A5048740689 @default.
- W2810984579 creator A5076483260 @default.
- W2810984579 creator A5023601512 @default.
- W2810984579 date "2018-07-30" @default.
- W2810984579 modified "2023-10-12" @default.
- W2810984579 title "Fast and deep deformation approximations" @default.
- W2810984579 cites W1988115241 @default.
- W2810984579 cites W1989305290 @default.
- W2810984579 cites W1991359153 @default.
- W2810984579 cites W1993962870 @default.
- W2810984579 cites W2004167999 @default.
- W2810984579 cites W2010512491 @default.
- W2810984579 cites W2014035212 @default.
- W2810984579 cites W2021047489 @default.
- W2810984579 cites W2034155303 @default.
- W2810984579 cites W2034943672 @default.
- W2810984579 cites W2038198107 @default.
- W2810984579 cites W2040703987 @default.
- W2810984579 cites W2047702343 @default.
- W2810984579 cites W2052728883 @default.
- W2810984579 cites W2060784870 @default.
- W2810984579 cites W2069531690 @default.
- W2810984579 cites W2094217503 @default.
- W2810984579 cites W2097944344 @default.
- W2810984579 cites W2124609748 @default.
- W2810984579 cites W2133607347 @default.
- W2810984579 cites W2152005648 @default.
- W2810984579 cites W2157492339 @default.
- W2810984579 cites W2160578123 @default.
- W2810984579 cites W2164445273 @default.
- W2810984579 cites W2402642024 @default.
- W2810984579 cites W2469134594 @default.
- W2810984579 cites W2472407021 @default.
- W2810984579 cites W2554228903 @default.
- W2810984579 cites W2611594503 @default.
- W2810984579 cites W2611706523 @default.
- W2810984579 cites W2623464795 @default.
- W2810984579 cites W2999456009 @default.
- W2810984579 cites W3136375062 @default.
- W2810984579 cites W4230824699 @default.
- W2810984579 cites W4231947169 @default.
- W2810984579 cites W4361865011 @default.
- W2810984579 doi "https://doi.org/10.1145/3197517.3201300" @default.
- W2810984579 hasPublicationYear "2018" @default.
- W2810984579 type Work @default.
- W2810984579 sameAs 2810984579 @default.
- W2810984579 citedByCount "52" @default.
- W2810984579 countsByYear W28109845792018 @default.
- W2810984579 countsByYear W28109845792019 @default.
- W2810984579 countsByYear W28109845792020 @default.
- W2810984579 countsByYear W28109845792021 @default.
- W2810984579 countsByYear W28109845792022 @default.
- W2810984579 countsByYear W28109845792023 @default.
- W2810984579 crossrefType "journal-article" @default.
- W2810984579 hasAuthorship W2810984579A5001740205 @default.
- W2810984579 hasAuthorship W2810984579A5023601512 @default.
- W2810984579 hasAuthorship W2810984579A5048740689 @default.
- W2810984579 hasAuthorship W2810984579A5076483260 @default.
- W2810984579 hasBestOaLocation W28109845792 @default.
- W2810984579 hasConcept C111368507 @default.
- W2810984579 hasConcept C11413529 @default.
- W2810984579 hasConcept C121332964 @default.
- W2810984579 hasConcept C121684516 @default.
- W2810984579 hasConcept C127313418 @default.
- W2810984579 hasConcept C144430266 @default.
- W2810984579 hasConcept C154945302 @default.
- W2810984579 hasConcept C158622935 @default.
- W2810984579 hasConcept C190390380 @default.
- W2810984579 hasConcept C204366326 @default.
- W2810984579 hasConcept C2524010 @default.
- W2810984579 hasConcept C2779530757 @default.
- W2810984579 hasConcept C2780861071 @default.
- W2810984579 hasConcept C31487907 @default.
- W2810984579 hasConcept C33923547 @default.
- W2810984579 hasConcept C41008148 @default.
- W2810984579 hasConcept C49774154 @default.
- W2810984579 hasConcept C502989409 @default.
- W2810984579 hasConcept C62520636 @default.
- W2810984579 hasConcept C69369342 @default.
- W2810984579 hasConcept C90697248 @default.
- W2810984579 hasConceptScore W2810984579C111368507 @default.
- W2810984579 hasConceptScore W2810984579C11413529 @default.
- W2810984579 hasConceptScore W2810984579C121332964 @default.
- W2810984579 hasConceptScore W2810984579C121684516 @default.
- W2810984579 hasConceptScore W2810984579C127313418 @default.
- W2810984579 hasConceptScore W2810984579C144430266 @default.
- W2810984579 hasConceptScore W2810984579C154945302 @default.
- W2810984579 hasConceptScore W2810984579C158622935 @default.
- W2810984579 hasConceptScore W2810984579C190390380 @default.
- W2810984579 hasConceptScore W2810984579C204366326 @default.
- W2810984579 hasConceptScore W2810984579C2524010 @default.
- W2810984579 hasConceptScore W2810984579C2779530757 @default.
- W2810984579 hasConceptScore W2810984579C2780861071 @default.
- W2810984579 hasConceptScore W2810984579C31487907 @default.
- W2810984579 hasConceptScore W2810984579C33923547 @default.