Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811026575> ?p ?o ?g. }
- W2811026575 abstract "Systematic reviews and meta-analyses of binary outcomes are widespread in all areas of application. The odds ratio, in particular, is by far the most popular effect measure. However, the standard meta-analysis of odds ratios using a random-effects model has a number of potential problems. An attractive alternative approach for the meta-analysis of binary outcomes uses a class of generalized linear mixed models (GLMMs). GLMMs are believed to overcome the problems of the standard random-effects model because they use a correct binomial-normal likelihood. However, this belief is based on theoretical considerations, and no sufficient simulations have assessed the performance of GLMMs in meta-analysis. This gap may be due to the computational complexity of these models and the resulting considerable time requirements.The present study is the first to provide extensive simulations on the performance of four GLMM methods (models with fixed and random study effects and two conditional methods) for meta-analysis of odds ratios in comparison to the standard random effects model.In our simulations, the hypergeometric-normal model provided less biased estimation of the heterogeneity variance than the standard random-effects meta-analysis using the restricted maximum likelihood (REML) estimation when the data were sparse, but the REML method performed similarly for the point estimation of the odds ratio, and better for the interval estimation.It is difficult to recommend the use of GLMMs in the practice of meta-analysis. The problem of finding uniformly good methods of the meta-analysis for binary outcomes is still open." @default.
- W2811026575 created "2018-07-10" @default.
- W2811026575 creator A5001621375 @default.
- W2811026575 creator A5026847936 @default.
- W2811026575 date "2018-07-04" @default.
- W2811026575 modified "2023-10-10" @default.
- W2811026575 title "Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study" @default.
- W2811026575 cites W1816267716 @default.
- W2811026575 cites W1883430110 @default.
- W2811026575 cites W1981374920 @default.
- W2811026575 cites W1989782940 @default.
- W2811026575 cites W1995582651 @default.
- W2811026575 cites W2006979162 @default.
- W2811026575 cites W2011378739 @default.
- W2811026575 cites W2012514410 @default.
- W2811026575 cites W2017762312 @default.
- W2811026575 cites W2018696687 @default.
- W2811026575 cites W2071790093 @default.
- W2811026575 cites W2094944276 @default.
- W2811026575 cites W2107328434 @default.
- W2811026575 cites W2108116635 @default.
- W2811026575 cites W2113136022 @default.
- W2811026575 cites W2116455948 @default.
- W2811026575 cites W2122590708 @default.
- W2811026575 cites W2128841980 @default.
- W2811026575 cites W2139168999 @default.
- W2811026575 cites W2140604743 @default.
- W2811026575 cites W2142540473 @default.
- W2811026575 cites W2143753833 @default.
- W2811026575 cites W2148361291 @default.
- W2811026575 cites W2149860264 @default.
- W2811026575 cites W2151133465 @default.
- W2811026575 cites W2154449833 @default.
- W2811026575 cites W2164586769 @default.
- W2811026575 cites W2167893882 @default.
- W2811026575 cites W2168885658 @default.
- W2811026575 cites W2169675077 @default.
- W2811026575 cites W2396667326 @default.
- W2811026575 cites W2580492787 @default.
- W2811026575 cites W2783147278 @default.
- W2811026575 cites W4236702380 @default.
- W2811026575 cites W2076424833 @default.
- W2811026575 doi "https://doi.org/10.1186/s12874-018-0531-9" @default.
- W2811026575 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6032567" @default.
- W2811026575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29973146" @default.
- W2811026575 hasPublicationYear "2018" @default.
- W2811026575 type Work @default.
- W2811026575 sameAs 2811026575 @default.
- W2811026575 citedByCount "31" @default.
- W2811026575 countsByYear W28110265752018 @default.
- W2811026575 countsByYear W28110265752019 @default.
- W2811026575 countsByYear W28110265752020 @default.
- W2811026575 countsByYear W28110265752021 @default.
- W2811026575 countsByYear W28110265752022 @default.
- W2811026575 countsByYear W28110265752023 @default.
- W2811026575 crossrefType "journal-article" @default.
- W2811026575 hasAuthorship W2811026575A5001621375 @default.
- W2811026575 hasAuthorship W2811026575A5026847936 @default.
- W2811026575 hasBestOaLocation W28110265751 @default.
- W2811026575 hasConcept C105795698 @default.
- W2811026575 hasConcept C126322002 @default.
- W2811026575 hasConcept C153720581 @default.
- W2811026575 hasConcept C167928553 @default.
- W2811026575 hasConcept C168743327 @default.
- W2811026575 hasConcept C205167067 @default.
- W2811026575 hasConcept C2779190172 @default.
- W2811026575 hasConcept C33923547 @default.
- W2811026575 hasConcept C41008148 @default.
- W2811026575 hasConcept C44249647 @default.
- W2811026575 hasConcept C48372109 @default.
- W2811026575 hasConcept C61420037 @default.
- W2811026575 hasConcept C71924100 @default.
- W2811026575 hasConcept C94375191 @default.
- W2811026575 hasConcept C95190672 @default.
- W2811026575 hasConceptScore W2811026575C105795698 @default.
- W2811026575 hasConceptScore W2811026575C126322002 @default.
- W2811026575 hasConceptScore W2811026575C153720581 @default.
- W2811026575 hasConceptScore W2811026575C167928553 @default.
- W2811026575 hasConceptScore W2811026575C168743327 @default.
- W2811026575 hasConceptScore W2811026575C205167067 @default.
- W2811026575 hasConceptScore W2811026575C2779190172 @default.
- W2811026575 hasConceptScore W2811026575C33923547 @default.
- W2811026575 hasConceptScore W2811026575C41008148 @default.
- W2811026575 hasConceptScore W2811026575C44249647 @default.
- W2811026575 hasConceptScore W2811026575C48372109 @default.
- W2811026575 hasConceptScore W2811026575C61420037 @default.
- W2811026575 hasConceptScore W2811026575C71924100 @default.
- W2811026575 hasConceptScore W2811026575C94375191 @default.
- W2811026575 hasConceptScore W2811026575C95190672 @default.
- W2811026575 hasFunder F4320334630 @default.
- W2811026575 hasIssue "1" @default.
- W2811026575 hasLocation W28110265751 @default.
- W2811026575 hasLocation W28110265752 @default.
- W2811026575 hasLocation W28110265753 @default.
- W2811026575 hasLocation W28110265754 @default.
- W2811026575 hasLocation W28110265755 @default.
- W2811026575 hasLocation W28110265756 @default.
- W2811026575 hasOpenAccess W2811026575 @default.
- W2811026575 hasPrimaryLocation W28110265751 @default.
- W2811026575 hasRelatedWork W1974553458 @default.