Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811058982> ?p ?o ?g. }
- W2811058982 endingPage "1286" @default.
- W2811058982 startingPage "1277" @default.
- W2811058982 abstract "Design of the data-driven diagnostic systems usually requires to have labeled data during the training session. This paper aims to design a hybrid data-driven framework for diagnosing faults, where the data labels are not available to a large extent. This hybrid framework has five steps for transforming raw vibration signals to informative sets of samples for decision making. It uses several state-of-the-art approaches for feature extraction and semi-supervised feature reduction. The decision-making step uses a number of state-of-the-art semi-supervised learners. This step also comprises a novel surface estimation approach that is developed for SSL. The proposed hybrid framework is applied for diagnosing bearing defects in induction motors and validated based on four scenarios, each of which is experimented with different amounts of labeled samples. The attained diagnostic accuracies show the efficiency of the proposed hybrid framework, including the novel semi-supervised learner in classifying bearing defects, regardless of the number of labeled samples." @default.
- W2811058982 created "2018-07-10" @default.
- W2811058982 creator A5005714184 @default.
- W2811058982 creator A5019275492 @default.
- W2811058982 creator A5019749887 @default.
- W2811058982 creator A5038291093 @default.
- W2811058982 date "2019-03-01" @default.
- W2811058982 modified "2023-10-17" @default.
- W2811058982 title "A Semi-Supervised Diagnostic Framework Based on the Surface Estimation of Faulty Distributions" @default.
- W2811058982 cites W1564277727 @default.
- W2811058982 cites W1644217398 @default.
- W2811058982 cites W1987236604 @default.
- W2811058982 cites W1991941961 @default.
- W2811058982 cites W2004039783 @default.
- W2811058982 cites W2006322444 @default.
- W2811058982 cites W2008989859 @default.
- W2811058982 cites W2012844989 @default.
- W2811058982 cites W2019288156 @default.
- W2811058982 cites W2019863495 @default.
- W2811058982 cites W2020836902 @default.
- W2811058982 cites W2042184006 @default.
- W2811058982 cites W2072857564 @default.
- W2811058982 cites W2081028792 @default.
- W2811058982 cites W2084172243 @default.
- W2811058982 cites W2097703723 @default.
- W2811058982 cites W2113590298 @default.
- W2811058982 cites W2118542129 @default.
- W2811058982 cites W2127416405 @default.
- W2811058982 cites W2145376937 @default.
- W2811058982 cites W2153504150 @default.
- W2811058982 cites W2163584563 @default.
- W2811058982 cites W2169902782 @default.
- W2811058982 cites W2276512949 @default.
- W2811058982 cites W2397271794 @default.
- W2811058982 cites W2557908743 @default.
- W2811058982 cites W2560722634 @default.
- W2811058982 cites W2564986390 @default.
- W2811058982 cites W2568819930 @default.
- W2811058982 cites W2742846146 @default.
- W2811058982 cites W2744001352 @default.
- W2811058982 cites W2760637973 @default.
- W2811058982 cites W2784122927 @default.
- W2811058982 cites W2798255764 @default.
- W2811058982 cites W3140496782 @default.
- W2811058982 doi "https://doi.org/10.1109/tii.2018.2851961" @default.
- W2811058982 hasPublicationYear "2019" @default.
- W2811058982 type Work @default.
- W2811058982 sameAs 2811058982 @default.
- W2811058982 citedByCount "68" @default.
- W2811058982 countsByYear W28110589822019 @default.
- W2811058982 countsByYear W28110589822020 @default.
- W2811058982 countsByYear W28110589822021 @default.
- W2811058982 countsByYear W28110589822022 @default.
- W2811058982 countsByYear W28110589822023 @default.
- W2811058982 crossrefType "journal-article" @default.
- W2811058982 hasAuthorship W2811058982A5005714184 @default.
- W2811058982 hasAuthorship W2811058982A5019275492 @default.
- W2811058982 hasAuthorship W2811058982A5019749887 @default.
- W2811058982 hasAuthorship W2811058982A5038291093 @default.
- W2811058982 hasConcept C111335779 @default.
- W2811058982 hasConcept C11413529 @default.
- W2811058982 hasConcept C119857082 @default.
- W2811058982 hasConcept C124101348 @default.
- W2811058982 hasConcept C132964779 @default.
- W2811058982 hasConcept C136389625 @default.
- W2811058982 hasConcept C138885662 @default.
- W2811058982 hasConcept C153180895 @default.
- W2811058982 hasConcept C154945302 @default.
- W2811058982 hasConcept C199360897 @default.
- W2811058982 hasConcept C2524010 @default.
- W2811058982 hasConcept C2776401178 @default.
- W2811058982 hasConcept C33923547 @default.
- W2811058982 hasConcept C41008148 @default.
- W2811058982 hasConcept C41895202 @default.
- W2811058982 hasConcept C48103436 @default.
- W2811058982 hasConcept C50644808 @default.
- W2811058982 hasConcept C52622490 @default.
- W2811058982 hasConceptScore W2811058982C111335779 @default.
- W2811058982 hasConceptScore W2811058982C11413529 @default.
- W2811058982 hasConceptScore W2811058982C119857082 @default.
- W2811058982 hasConceptScore W2811058982C124101348 @default.
- W2811058982 hasConceptScore W2811058982C132964779 @default.
- W2811058982 hasConceptScore W2811058982C136389625 @default.
- W2811058982 hasConceptScore W2811058982C138885662 @default.
- W2811058982 hasConceptScore W2811058982C153180895 @default.
- W2811058982 hasConceptScore W2811058982C154945302 @default.
- W2811058982 hasConceptScore W2811058982C199360897 @default.
- W2811058982 hasConceptScore W2811058982C2524010 @default.
- W2811058982 hasConceptScore W2811058982C2776401178 @default.
- W2811058982 hasConceptScore W2811058982C33923547 @default.
- W2811058982 hasConceptScore W2811058982C41008148 @default.
- W2811058982 hasConceptScore W2811058982C41895202 @default.
- W2811058982 hasConceptScore W2811058982C48103436 @default.
- W2811058982 hasConceptScore W2811058982C50644808 @default.
- W2811058982 hasConceptScore W2811058982C52622490 @default.
- W2811058982 hasFunder F4320334593 @default.
- W2811058982 hasIssue "3" @default.
- W2811058982 hasLocation W28110589821 @default.