Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811290076> ?p ?o ?g. }
- W2811290076 abstract "Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once.Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained.VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands." @default.
- W2811290076 created "2018-07-10" @default.
- W2811290076 creator A5005343118 @default.
- W2811290076 creator A5018620070 @default.
- W2811290076 creator A5042267372 @default.
- W2811290076 creator A5062928139 @default.
- W2811290076 date "2018-07-04" @default.
- W2811290076 modified "2023-09-27" @default.
- W2811290076 title "Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results?" @default.
- W2811290076 cites W1499569748 @default.
- W2811290076 cites W1530729903 @default.
- W2811290076 cites W1533569143 @default.
- W2811290076 cites W1535724828 @default.
- W2811290076 cites W1563946068 @default.
- W2811290076 cites W1581201881 @default.
- W2811290076 cites W1829361182 @default.
- W2811290076 cites W1902027874 @default.
- W2811290076 cites W1917059444 @default.
- W2811290076 cites W1952699544 @default.
- W2811290076 cites W1964198451 @default.
- W2811290076 cites W1969455435 @default.
- W2811290076 cites W1974671923 @default.
- W2811290076 cites W1976391658 @default.
- W2811290076 cites W1978819209 @default.
- W2811290076 cites W1984628048 @default.
- W2811290076 cites W1984630615 @default.
- W2811290076 cites W1989298635 @default.
- W2811290076 cites W1994877577 @default.
- W2811290076 cites W1996490753 @default.
- W2811290076 cites W2000210540 @default.
- W2811290076 cites W2001492509 @default.
- W2811290076 cites W2007879544 @default.
- W2811290076 cites W2010241252 @default.
- W2811290076 cites W2010700889 @default.
- W2811290076 cites W2011756512 @default.
- W2811290076 cites W2017288758 @default.
- W2811290076 cites W2017330148 @default.
- W2811290076 cites W2018686821 @default.
- W2811290076 cites W2028087943 @default.
- W2811290076 cites W2034070631 @default.
- W2811290076 cites W2035332286 @default.
- W2811290076 cites W2039902016 @default.
- W2811290076 cites W2053508475 @default.
- W2811290076 cites W2062313247 @default.
- W2811290076 cites W2067104802 @default.
- W2811290076 cites W2068270359 @default.
- W2811290076 cites W2069214509 @default.
- W2811290076 cites W2069753895 @default.
- W2811290076 cites W2071128523 @default.
- W2811290076 cites W2077458217 @default.
- W2811290076 cites W2078659020 @default.
- W2811290076 cites W2079394669 @default.
- W2811290076 cites W2080157706 @default.
- W2811290076 cites W2085765714 @default.
- W2811290076 cites W2099373664 @default.
- W2811290076 cites W2101357808 @default.
- W2811290076 cites W2103711007 @default.
- W2811290076 cites W2104970719 @default.
- W2811290076 cites W2122593977 @default.
- W2811290076 cites W2122735028 @default.
- W2811290076 cites W2124727568 @default.
- W2811290076 cites W2129932000 @default.
- W2811290076 cites W2130068088 @default.
- W2811290076 cites W2132952242 @default.
- W2811290076 cites W2138899586 @default.
- W2811290076 cites W2152353763 @default.
- W2811290076 cites W2157321686 @default.
- W2811290076 cites W2165388921 @default.
- W2811290076 cites W2220147277 @default.
- W2811290076 cites W2230981257 @default.
- W2811290076 cites W2295097024 @default.
- W2811290076 cites W2295973197 @default.
- W2811290076 cites W2299186091 @default.
- W2811290076 cites W2299234569 @default.
- W2811290076 cites W2397935141 @default.
- W2811290076 cites W2504864929 @default.
- W2811290076 cites W2747848761 @default.
- W2811290076 cites W2758329174 @default.
- W2811290076 cites W2763148304 @default.
- W2811290076 cites W4212904990 @default.
- W2811290076 doi "https://doi.org/10.1186/s13007-018-0320-9" @default.
- W2811290076 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6031114" @default.
- W2811290076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29997681" @default.
- W2811290076 hasPublicationYear "2018" @default.
- W2811290076 type Work @default.
- W2811290076 sameAs 2811290076 @default.
- W2811290076 citedByCount "34" @default.
- W2811290076 countsByYear W28112900762019 @default.
- W2811290076 countsByYear W28112900762020 @default.
- W2811290076 countsByYear W28112900762021 @default.
- W2811290076 countsByYear W28112900762022 @default.
- W2811290076 countsByYear W28112900762023 @default.
- W2811290076 crossrefType "journal-article" @default.
- W2811290076 hasAuthorship W2811290076A5005343118 @default.
- W2811290076 hasAuthorship W2811290076A5018620070 @default.
- W2811290076 hasAuthorship W2811290076A5042267372 @default.
- W2811290076 hasAuthorship W2811290076A5062928139 @default.
- W2811290076 hasBestOaLocation W28112900761 @default.
- W2811290076 hasConcept C105795698 @default.
- W2811290076 hasConcept C120665830 @default.