Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811296027> ?p ?o ?g. }
- W2811296027 endingPage "157" @default.
- W2811296027 startingPage "148" @default.
- W2811296027 abstract "In multi-label learning, different labels may have their own inherent characteristics for distinguishing each other, in the meanwhile, exploiting the correlations among labels is another practical yet challenging task to improve the performance. In this work, we present a new method for the joint learning of label-specific features and label correlations. The key is the design of an optimization framework to learn the weight assignment scheme of features, and the correlations among labels are taken into account by constructing additional features at the same time. Through iteratively optimizing the two sets of unknown variables, which are referred to feature weights and label correlations-based features, label-specific features of each label are available to achieve multi-label classification. Comprehensive experiments on various multi-label data sets including two collected traditional Chinese medicine data sets reveal the advantages of our proposed algorithm." @default.
- W2811296027 created "2018-07-10" @default.
- W2811296027 creator A5022079492 @default.
- W2811296027 creator A5027240571 @default.
- W2811296027 creator A5032136718 @default.
- W2811296027 creator A5066468110 @default.
- W2811296027 creator A5078988375 @default.
- W2811296027 creator A5081767617 @default.
- W2811296027 creator A5086151288 @default.
- W2811296027 date "2018-11-01" @default.
- W2811296027 modified "2023-10-18" @default.
- W2811296027 title "Multi-label learning with label-specific features by resolving label correlations" @default.
- W2811296027 cites W1970696760 @default.
- W2811296027 cites W1973016466 @default.
- W2811296027 cites W1980928891 @default.
- W2811296027 cites W1999954155 @default.
- W2811296027 cites W2044170702 @default.
- W2811296027 cites W2052684427 @default.
- W2811296027 cites W2053463056 @default.
- W2811296027 cites W2076365336 @default.
- W2811296027 cites W2090630554 @default.
- W2811296027 cites W2100556411 @default.
- W2811296027 cites W2114315281 @default.
- W2811296027 cites W2119466907 @default.
- W2811296027 cites W2123895705 @default.
- W2811296027 cites W2130187411 @default.
- W2811296027 cites W2142224912 @default.
- W2811296027 cites W2145473366 @default.
- W2811296027 cites W2153635508 @default.
- W2811296027 cites W2154053567 @default.
- W2811296027 cites W2156935079 @default.
- W2811296027 cites W2166912588 @default.
- W2811296027 cites W2343038205 @default.
- W2811296027 cites W2344539384 @default.
- W2811296027 cites W2345285933 @default.
- W2811296027 cites W2443284789 @default.
- W2811296027 cites W2507677290 @default.
- W2811296027 cites W2530181556 @default.
- W2811296027 cites W2556844550 @default.
- W2811296027 cites W2577763257 @default.
- W2811296027 cites W2588628126 @default.
- W2811296027 cites W2594029683 @default.
- W2811296027 cites W2611049748 @default.
- W2811296027 cites W636917482 @default.
- W2811296027 doi "https://doi.org/10.1016/j.knosys.2018.07.003" @default.
- W2811296027 hasPublicationYear "2018" @default.
- W2811296027 type Work @default.
- W2811296027 sameAs 2811296027 @default.
- W2811296027 citedByCount "76" @default.
- W2811296027 countsByYear W28112960272018 @default.
- W2811296027 countsByYear W28112960272019 @default.
- W2811296027 countsByYear W28112960272020 @default.
- W2811296027 countsByYear W28112960272021 @default.
- W2811296027 countsByYear W28112960272022 @default.
- W2811296027 countsByYear W28112960272023 @default.
- W2811296027 crossrefType "journal-article" @default.
- W2811296027 hasAuthorship W2811296027A5022079492 @default.
- W2811296027 hasAuthorship W2811296027A5027240571 @default.
- W2811296027 hasAuthorship W2811296027A5032136718 @default.
- W2811296027 hasAuthorship W2811296027A5066468110 @default.
- W2811296027 hasAuthorship W2811296027A5078988375 @default.
- W2811296027 hasAuthorship W2811296027A5081767617 @default.
- W2811296027 hasAuthorship W2811296027A5086151288 @default.
- W2811296027 hasConcept C119857082 @default.
- W2811296027 hasConcept C124101348 @default.
- W2811296027 hasConcept C138885662 @default.
- W2811296027 hasConcept C153180895 @default.
- W2811296027 hasConcept C154945302 @default.
- W2811296027 hasConcept C162324750 @default.
- W2811296027 hasConcept C187736073 @default.
- W2811296027 hasConcept C26517878 @default.
- W2811296027 hasConcept C2776401178 @default.
- W2811296027 hasConcept C2776482837 @default.
- W2811296027 hasConcept C2780451532 @default.
- W2811296027 hasConcept C38652104 @default.
- W2811296027 hasConcept C41008148 @default.
- W2811296027 hasConcept C41895202 @default.
- W2811296027 hasConceptScore W2811296027C119857082 @default.
- W2811296027 hasConceptScore W2811296027C124101348 @default.
- W2811296027 hasConceptScore W2811296027C138885662 @default.
- W2811296027 hasConceptScore W2811296027C153180895 @default.
- W2811296027 hasConceptScore W2811296027C154945302 @default.
- W2811296027 hasConceptScore W2811296027C162324750 @default.
- W2811296027 hasConceptScore W2811296027C187736073 @default.
- W2811296027 hasConceptScore W2811296027C26517878 @default.
- W2811296027 hasConceptScore W2811296027C2776401178 @default.
- W2811296027 hasConceptScore W2811296027C2776482837 @default.
- W2811296027 hasConceptScore W2811296027C2780451532 @default.
- W2811296027 hasConceptScore W2811296027C38652104 @default.
- W2811296027 hasConceptScore W2811296027C41008148 @default.
- W2811296027 hasConceptScore W2811296027C41895202 @default.
- W2811296027 hasFunder F4320321001 @default.
- W2811296027 hasLocation W28112960271 @default.
- W2811296027 hasOpenAccess W2811296027 @default.
- W2811296027 hasPrimaryLocation W28112960271 @default.
- W2811296027 hasRelatedWork W2329452785 @default.
- W2811296027 hasRelatedWork W2356380379 @default.
- W2811296027 hasRelatedWork W2382607599 @default.