Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811297572> ?p ?o ?g. }
- W2811297572 endingPage "129" @default.
- W2811297572 startingPage "118" @default.
- W2811297572 abstract "Integrating various features from different protein properties helps to improve the prediction accuracy of protein structural class but need to deal with the corresponding integrated high-dimensional data. Thus, the feature selection process used to select the informative features from the integrated features also becomes an indispensable key step. This paper proposes a novel feature selection method, Partial-Maximum-Correlation-Information based Recursive Feature Elimination (PMCI-RFE), to quickly select the best feature subset from the integrated high-dimensional protein features set to improve the prediction performance of protein structural class. PMCI-RFE can also be used to find different types of informative features to further analyze some biological relationships. The proposed PMCI-RFE method uses the correlation information between the feature space and class encoding space to select informative features based on the idea of orthogonal component projection in the feature space. The experimental results on six widely used benchmark datasets show that PMCI-RFE is a fast and effective method compare to other four state-of-the-art feature selection methods, which indeed can make full use of different protein property information and improve the predictability of protein structural class." @default.
- W2811297572 created "2018-07-10" @default.
- W2811297572 creator A5060588336 @default.
- W2811297572 creator A5066990730 @default.
- W2811297572 creator A5087186760 @default.
- W2811297572 date "2018-10-01" @default.
- W2811297572 modified "2023-10-16" @default.
- W2811297572 title "A novel feature selection method to predict protein structural class" @default.
- W2811297572 cites W1420039358 @default.
- W2811297572 cites W1480577415 @default.
- W2811297572 cites W149741886 @default.
- W2811297572 cites W1540119895 @default.
- W2811297572 cites W1964846559 @default.
- W2811297572 cites W1977922165 @default.
- W2811297572 cites W1984437717 @default.
- W2811297572 cites W1998354148 @default.
- W2811297572 cites W2017229033 @default.
- W2811297572 cites W2020580483 @default.
- W2811297572 cites W2030793934 @default.
- W2811297572 cites W2038020595 @default.
- W2811297572 cites W2040183015 @default.
- W2811297572 cites W2044143373 @default.
- W2811297572 cites W2053154970 @default.
- W2811297572 cites W2063978378 @default.
- W2811297572 cites W2068361619 @default.
- W2811297572 cites W2070753511 @default.
- W2811297572 cites W2072168663 @default.
- W2811297572 cites W2072805285 @default.
- W2811297572 cites W2076129045 @default.
- W2811297572 cites W2078381696 @default.
- W2811297572 cites W2078697068 @default.
- W2811297572 cites W2083862258 @default.
- W2811297572 cites W2087327261 @default.
- W2811297572 cites W2093177921 @default.
- W2811297572 cites W2105634619 @default.
- W2811297572 cites W2109363337 @default.
- W2811297572 cites W2109553965 @default.
- W2811297572 cites W2112733344 @default.
- W2811297572 cites W2112912201 @default.
- W2811297572 cites W2122210511 @default.
- W2811297572 cites W2143426320 @default.
- W2811297572 cites W2145957695 @default.
- W2811297572 cites W2152800101 @default.
- W2811297572 cites W2153187042 @default.
- W2811297572 cites W2153635508 @default.
- W2811297572 cites W2155364865 @default.
- W2811297572 cites W2158714788 @default.
- W2811297572 cites W2163449716 @default.
- W2811297572 cites W2201492934 @default.
- W2811297572 cites W2340054390 @default.
- W2811297572 cites W254399443 @default.
- W2811297572 cites W2559007573 @default.
- W2811297572 cites W2598976994 @default.
- W2811297572 cites W2762038733 @default.
- W2811297572 cites W2911964244 @default.
- W2811297572 cites W3100220322 @default.
- W2811297572 cites W4249920046 @default.
- W2811297572 doi "https://doi.org/10.1016/j.compbiolchem.2018.06.007" @default.
- W2811297572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29990791" @default.
- W2811297572 hasPublicationYear "2018" @default.
- W2811297572 type Work @default.
- W2811297572 sameAs 2811297572 @default.
- W2811297572 citedByCount "9" @default.
- W2811297572 countsByYear W28112975722019 @default.
- W2811297572 countsByYear W28112975722020 @default.
- W2811297572 countsByYear W28112975722021 @default.
- W2811297572 countsByYear W28112975722022 @default.
- W2811297572 countsByYear W28112975722023 @default.
- W2811297572 crossrefType "journal-article" @default.
- W2811297572 hasAuthorship W2811297572A5060588336 @default.
- W2811297572 hasAuthorship W2811297572A5066990730 @default.
- W2811297572 hasAuthorship W2811297572A5087186760 @default.
- W2811297572 hasConcept C11413529 @default.
- W2811297572 hasConcept C119857082 @default.
- W2811297572 hasConcept C124101348 @default.
- W2811297572 hasConcept C13280743 @default.
- W2811297572 hasConcept C138885662 @default.
- W2811297572 hasConcept C148483581 @default.
- W2811297572 hasConcept C153180895 @default.
- W2811297572 hasConcept C154945302 @default.
- W2811297572 hasConcept C177264268 @default.
- W2811297572 hasConcept C185798385 @default.
- W2811297572 hasConcept C199360897 @default.
- W2811297572 hasConcept C205649164 @default.
- W2811297572 hasConcept C2776401178 @default.
- W2811297572 hasConcept C2777212361 @default.
- W2811297572 hasConcept C41008148 @default.
- W2811297572 hasConcept C41895202 @default.
- W2811297572 hasConcept C57493831 @default.
- W2811297572 hasConcept C83665646 @default.
- W2811297572 hasConceptScore W2811297572C11413529 @default.
- W2811297572 hasConceptScore W2811297572C119857082 @default.
- W2811297572 hasConceptScore W2811297572C124101348 @default.
- W2811297572 hasConceptScore W2811297572C13280743 @default.
- W2811297572 hasConceptScore W2811297572C138885662 @default.
- W2811297572 hasConceptScore W2811297572C148483581 @default.
- W2811297572 hasConceptScore W2811297572C153180895 @default.
- W2811297572 hasConceptScore W2811297572C154945302 @default.