Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811376496> ?p ?o ?g. }
- W2811376496 endingPage "873" @default.
- W2811376496 startingPage "873" @default.
- W2811376496 abstract "The stable operation of sewage treatment is of great significance to controlling regional water environment pollution. It is also important to forecast the inlet water quality accurately, which may ensure the purification efficiency of sewage treatment at a low cost. In this paper, a combined kernel principal component analysis (KPCA) and extreme learning machine (ELM) model is established to forecast the inlet water quality of sewage treatment. Specifically, KPCA is employed for feature extraction and dimensionality reduction of the inlet wastewater quality and ELM is utilized for the future inlet water quality forecasting. The experimental results indicated that the KPCA-ELM model has a higher accuracy than the other comparison PCA-ELM model, ELM model, and back propagation neural network (BPNN) model for forecasting COD and BOD concentration of the inlet wastewater, with mean absolute error (MAE) values of 2.322 mg/L and 1.125 mg/L, mean absolute percentage error (MAPE) values of 1.223% and 1.321%, and root mean square error (RMSE) values of 3.108 and 1.340, respectively. It is recommended from this research that the method may provide a reliable and effective reference for forecasting the water quality of sewage treatment." @default.
- W2811376496 created "2018-07-10" @default.
- W2811376496 creator A5004009456 @default.
- W2811376496 creator A5010243176 @default.
- W2811376496 creator A5027659527 @default.
- W2811376496 creator A5053958450 @default.
- W2811376496 creator A5072070511 @default.
- W2811376496 date "2018-06-30" @default.
- W2811376496 modified "2023-10-18" @default.
- W2811376496 title "Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine" @default.
- W2811376496 cites W1124861640 @default.
- W2811376496 cites W1957283565 @default.
- W2811376496 cites W1963992218 @default.
- W2811376496 cites W1972885193 @default.
- W2811376496 cites W1979919415 @default.
- W2811376496 cites W1985034083 @default.
- W2811376496 cites W1995917979 @default.
- W2811376496 cites W2008667434 @default.
- W2811376496 cites W2009700261 @default.
- W2811376496 cites W2011362646 @default.
- W2811376496 cites W2019533369 @default.
- W2811376496 cites W2034919924 @default.
- W2811376496 cites W2037072271 @default.
- W2811376496 cites W2039049978 @default.
- W2811376496 cites W2041461910 @default.
- W2811376496 cites W2042450400 @default.
- W2811376496 cites W2047431064 @default.
- W2811376496 cites W2048407872 @default.
- W2811376496 cites W2048571065 @default.
- W2811376496 cites W2051410832 @default.
- W2811376496 cites W2057328791 @default.
- W2811376496 cites W2059228429 @default.
- W2811376496 cites W2074446470 @default.
- W2811376496 cites W2090193380 @default.
- W2811376496 cites W2102471052 @default.
- W2811376496 cites W2111072639 @default.
- W2811376496 cites W2113506774 @default.
- W2811376496 cites W2116755951 @default.
- W2811376496 cites W2128728535 @default.
- W2811376496 cites W2133752269 @default.
- W2811376496 cites W2140095548 @default.
- W2811376496 cites W2146993988 @default.
- W2811376496 cites W2161336914 @default.
- W2811376496 cites W2165967751 @default.
- W2811376496 cites W2172149687 @default.
- W2811376496 cites W2181125631 @default.
- W2811376496 cites W2274374807 @default.
- W2811376496 cites W2331762373 @default.
- W2811376496 cites W2414616848 @default.
- W2811376496 cites W2415134260 @default.
- W2811376496 cites W2518919094 @default.
- W2811376496 cites W2520933275 @default.
- W2811376496 cites W2572646164 @default.
- W2811376496 cites W2586059590 @default.
- W2811376496 cites W2588810797 @default.
- W2811376496 cites W2724129401 @default.
- W2811376496 cites W2769791482 @default.
- W2811376496 cites W2783350521 @default.
- W2811376496 cites W2785412463 @default.
- W2811376496 cites W2796057380 @default.
- W2811376496 cites W2796402962 @default.
- W2811376496 cites W842171740 @default.
- W2811376496 doi "https://doi.org/10.3390/w10070873" @default.
- W2811376496 hasPublicationYear "2018" @default.
- W2811376496 type Work @default.
- W2811376496 sameAs 2811376496 @default.
- W2811376496 citedByCount "12" @default.
- W2811376496 countsByYear W28113764962020 @default.
- W2811376496 countsByYear W28113764962021 @default.
- W2811376496 countsByYear W28113764962022 @default.
- W2811376496 countsByYear W28113764962023 @default.
- W2811376496 crossrefType "journal-article" @default.
- W2811376496 hasAuthorship W2811376496A5004009456 @default.
- W2811376496 hasAuthorship W2811376496A5010243176 @default.
- W2811376496 hasAuthorship W2811376496A5027659527 @default.
- W2811376496 hasAuthorship W2811376496A5053958450 @default.
- W2811376496 hasAuthorship W2811376496A5072070511 @default.
- W2811376496 hasBestOaLocation W28113764961 @default.
- W2811376496 hasConcept C105795698 @default.
- W2811376496 hasConcept C122280245 @default.
- W2811376496 hasConcept C12267149 @default.
- W2811376496 hasConcept C127413603 @default.
- W2811376496 hasConcept C139945424 @default.
- W2811376496 hasConcept C150217764 @default.
- W2811376496 hasConcept C154945302 @default.
- W2811376496 hasConcept C182335926 @default.
- W2811376496 hasConcept C18903297 @default.
- W2811376496 hasConcept C201289731 @default.
- W2811376496 hasConcept C27438332 @default.
- W2811376496 hasConcept C2780150128 @default.
- W2811376496 hasConcept C2780797713 @default.
- W2811376496 hasConcept C33923547 @default.
- W2811376496 hasConcept C39432304 @default.
- W2811376496 hasConcept C41008148 @default.
- W2811376496 hasConcept C50644808 @default.
- W2811376496 hasConcept C78519656 @default.
- W2811376496 hasConcept C86803240 @default.
- W2811376496 hasConcept C87717796 @default.