Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811433048> ?p ?o ?g. }
- W2811433048 endingPage "6271" @default.
- W2811433048 startingPage "6252" @default.
- W2811433048 abstract "This paper presents a new multiple‐input–single‐output nonlinear system identification method based on Hammerstein model, which includes a fractional transfer function and a Modified Radial Basis Function Neural Network (MRBFNN) as linear dynamic part and static nonlinear subsystem, respectively. The size of Radial Basis Function Neural Network (RBFNN) grows with the number of inputs exponentially. As a novel idea, the MRBFNN is proposed, whose adjustable parameters are far fewer than other RBFNNs presented yet. A Modified Genetic Algorithm is used to identify the fractional orders and the centers and widths of MRBFNN and obtain an initial estimation of other unknown parameters. The Recursive Least Square (RLS) method is used to improve the estimation by updating the weighting parameters of MRBFNN and the transfer function coefficients. The convergence analysis of the proposed RLS is provided. Simulation results show the effectiveness and accuracy of the proposed method." @default.
- W2811433048 created "2018-07-10" @default.
- W2811433048 creator A5030594801 @default.
- W2811433048 creator A5074492621 @default.
- W2811433048 creator A5089396669 @default.
- W2811433048 date "2018-07-02" @default.
- W2811433048 modified "2023-09-24" @default.
- W2811433048 title "A multiple-input-single-output fractional-order Hammerstein model identification based on modified neural network" @default.
- W2811433048 cites W1511017376 @default.
- W2811433048 cites W1522678400 @default.
- W2811433048 cites W1543659154 @default.
- W2811433048 cites W1583457578 @default.
- W2811433048 cites W1595322674 @default.
- W2811433048 cites W1973407458 @default.
- W2811433048 cites W1991753499 @default.
- W2811433048 cites W2002088832 @default.
- W2811433048 cites W2006043160 @default.
- W2811433048 cites W2033306805 @default.
- W2811433048 cites W2033488530 @default.
- W2811433048 cites W2046301546 @default.
- W2811433048 cites W2054888879 @default.
- W2811433048 cites W2061797027 @default.
- W2811433048 cites W2062669470 @default.
- W2811433048 cites W2081869873 @default.
- W2811433048 cites W2082796236 @default.
- W2811433048 cites W2111834295 @default.
- W2811433048 cites W2116862700 @default.
- W2811433048 cites W2129454551 @default.
- W2811433048 cites W2147807198 @default.
- W2811433048 cites W2289231063 @default.
- W2811433048 cites W2476959674 @default.
- W2811433048 cites W2503397322 @default.
- W2811433048 cites W2555921788 @default.
- W2811433048 cites W2582587825 @default.
- W2811433048 cites W2593309265 @default.
- W2811433048 cites W2605760454 @default.
- W2811433048 cites W2761183543 @default.
- W2811433048 cites W2791491579 @default.
- W2811433048 cites W2792051776 @default.
- W2811433048 cites W4253271010 @default.
- W2811433048 cites W1979332913 @default.
- W2811433048 cites W2040836334 @default.
- W2811433048 doi "https://doi.org/10.1002/mma.5136" @default.
- W2811433048 hasPublicationYear "2018" @default.
- W2811433048 type Work @default.
- W2811433048 sameAs 2811433048 @default.
- W2811433048 citedByCount "5" @default.
- W2811433048 countsByYear W28114330482020 @default.
- W2811433048 countsByYear W28114330482021 @default.
- W2811433048 countsByYear W28114330482022 @default.
- W2811433048 countsByYear W28114330482023 @default.
- W2811433048 crossrefType "journal-article" @default.
- W2811433048 hasAuthorship W2811433048A5030594801 @default.
- W2811433048 hasAuthorship W2811433048A5074492621 @default.
- W2811433048 hasAuthorship W2811433048A5089396669 @default.
- W2811433048 hasConcept C11413529 @default.
- W2811433048 hasConcept C116834253 @default.
- W2811433048 hasConcept C119247159 @default.
- W2811433048 hasConcept C119599485 @default.
- W2811433048 hasConcept C121332964 @default.
- W2811433048 hasConcept C126255220 @default.
- W2811433048 hasConcept C126838900 @default.
- W2811433048 hasConcept C127413603 @default.
- W2811433048 hasConcept C132917294 @default.
- W2811433048 hasConcept C14036430 @default.
- W2811433048 hasConcept C154945302 @default.
- W2811433048 hasConcept C158622935 @default.
- W2811433048 hasConcept C162324750 @default.
- W2811433048 hasConcept C183115368 @default.
- W2811433048 hasConcept C22157029 @default.
- W2811433048 hasConcept C2775924081 @default.
- W2811433048 hasConcept C2777303404 @default.
- W2811433048 hasConcept C28826006 @default.
- W2811433048 hasConcept C33923547 @default.
- W2811433048 hasConcept C41008148 @default.
- W2811433048 hasConcept C47446073 @default.
- W2811433048 hasConcept C50522688 @default.
- W2811433048 hasConcept C50644808 @default.
- W2811433048 hasConcept C59822182 @default.
- W2811433048 hasConcept C62520636 @default.
- W2811433048 hasConcept C67186912 @default.
- W2811433048 hasConcept C71924100 @default.
- W2811433048 hasConcept C77088390 @default.
- W2811433048 hasConcept C78458016 @default.
- W2811433048 hasConcept C81299745 @default.
- W2811433048 hasConcept C86803240 @default.
- W2811433048 hasConcept C98856871 @default.
- W2811433048 hasConceptScore W2811433048C11413529 @default.
- W2811433048 hasConceptScore W2811433048C116834253 @default.
- W2811433048 hasConceptScore W2811433048C119247159 @default.
- W2811433048 hasConceptScore W2811433048C119599485 @default.
- W2811433048 hasConceptScore W2811433048C121332964 @default.
- W2811433048 hasConceptScore W2811433048C126255220 @default.
- W2811433048 hasConceptScore W2811433048C126838900 @default.
- W2811433048 hasConceptScore W2811433048C127413603 @default.
- W2811433048 hasConceptScore W2811433048C132917294 @default.
- W2811433048 hasConceptScore W2811433048C14036430 @default.
- W2811433048 hasConceptScore W2811433048C154945302 @default.