Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811448641> ?p ?o ?g. }
- W2811448641 endingPage "439" @default.
- W2811448641 startingPage "430" @default.
- W2811448641 abstract "Objectives In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. Methods A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians. Results In institute 1, median failure load was significantly lower for patients who sustained a fracture than for patients with no fractures. In institutes 2 and 3, the number of patients with a fracture was too low to make a clear distinction. Fracture locations were well predicted by the FE model when compared with post-fracture radiographs. The FE model was more accurate in identifying patients with a high fracture risk compared with experienced clinicians, with a sensitivity of 89% versus 0% to 33% for clinical assessments. Specificity was 79% for the FE models versus 84% to 95% for clinical assessments. Conclusion FE models can be a valuable tool to improve clinical fracture risk predictions in metastatic bone disease. Future work in a larger patient population should confirm the higher predictive power of FE models compared with current clinical guidelines. Cite this article: F. Eggermont, L. C. Derikx, N. Verdonschot, I. C. M. van der Geest, M. A. A. de Jong, A. Snyers, Y. M. van der Linden, E. Tanck. Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians? Towards computational modelling in daily clinical practice. Bone Joint Res 2018;7:430–439. DOI: 10.1302/2046-3758.76.BJR-2017-0325.R2." @default.
- W2811448641 created "2018-07-10" @default.
- W2811448641 creator A5002182091 @default.
- W2811448641 creator A5008907302 @default.
- W2811448641 creator A5030076349 @default.
- W2811448641 creator A5046707267 @default.
- W2811448641 creator A5051812409 @default.
- W2811448641 creator A5076934128 @default.
- W2811448641 creator A5082300255 @default.
- W2811448641 creator A5090992018 @default.
- W2811448641 date "2018-06-01" @default.
- W2811448641 modified "2023-10-03" @default.
- W2811448641 title "Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians?" @default.
- W2811448641 cites W1792995416 @default.
- W2811448641 cites W1898985912 @default.
- W2811448641 cites W1982915376 @default.
- W2811448641 cites W1984862165 @default.
- W2811448641 cites W1996737280 @default.
- W2811448641 cites W2010654330 @default.
- W2811448641 cites W2013745320 @default.
- W2811448641 cites W2028370379 @default.
- W2811448641 cites W2044892451 @default.
- W2811448641 cites W2046842100 @default.
- W2811448641 cites W2064230636 @default.
- W2811448641 cites W2070689474 @default.
- W2811448641 cites W2078515578 @default.
- W2811448641 cites W2079803459 @default.
- W2811448641 cites W2084189654 @default.
- W2811448641 cites W2096053931 @default.
- W2811448641 cites W2102338791 @default.
- W2811448641 cites W2107482511 @default.
- W2811448641 cites W2109886915 @default.
- W2811448641 cites W2113701976 @default.
- W2811448641 cites W2139358843 @default.
- W2811448641 cites W2286106986 @default.
- W2811448641 cites W2471904951 @default.
- W2811448641 cites W2556666829 @default.
- W2811448641 cites W3028353437 @default.
- W2811448641 cites W4210971383 @default.
- W2811448641 doi "https://doi.org/10.1302/2046-3758.76.bjr-2017-0325.r2" @default.
- W2811448641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6035356" @default.
- W2811448641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30034797" @default.
- W2811448641 hasPublicationYear "2018" @default.
- W2811448641 type Work @default.
- W2811448641 sameAs 2811448641 @default.
- W2811448641 citedByCount "41" @default.
- W2811448641 countsByYear W28114486412018 @default.
- W2811448641 countsByYear W28114486412019 @default.
- W2811448641 countsByYear W28114486412020 @default.
- W2811448641 countsByYear W28114486412021 @default.
- W2811448641 countsByYear W28114486412022 @default.
- W2811448641 countsByYear W28114486412023 @default.
- W2811448641 crossrefType "journal-article" @default.
- W2811448641 hasAuthorship W2811448641A5002182091 @default.
- W2811448641 hasAuthorship W2811448641A5008907302 @default.
- W2811448641 hasAuthorship W2811448641A5030076349 @default.
- W2811448641 hasAuthorship W2811448641A5046707267 @default.
- W2811448641 hasAuthorship W2811448641A5051812409 @default.
- W2811448641 hasAuthorship W2811448641A5076934128 @default.
- W2811448641 hasAuthorship W2811448641A5082300255 @default.
- W2811448641 hasAuthorship W2811448641A5090992018 @default.
- W2811448641 hasBestOaLocation W28114486411 @default.
- W2811448641 hasConcept C126322002 @default.
- W2811448641 hasConcept C126838900 @default.
- W2811448641 hasConcept C141071460 @default.
- W2811448641 hasConcept C188816634 @default.
- W2811448641 hasConcept C207886595 @default.
- W2811448641 hasConcept C2908647359 @default.
- W2811448641 hasConcept C36454342 @default.
- W2811448641 hasConcept C71924100 @default.
- W2811448641 hasConcept C72563966 @default.
- W2811448641 hasConcept C8337478 @default.
- W2811448641 hasConcept C99454951 @default.
- W2811448641 hasConceptScore W2811448641C126322002 @default.
- W2811448641 hasConceptScore W2811448641C126838900 @default.
- W2811448641 hasConceptScore W2811448641C141071460 @default.
- W2811448641 hasConceptScore W2811448641C188816634 @default.
- W2811448641 hasConceptScore W2811448641C207886595 @default.
- W2811448641 hasConceptScore W2811448641C2908647359 @default.
- W2811448641 hasConceptScore W2811448641C36454342 @default.
- W2811448641 hasConceptScore W2811448641C71924100 @default.
- W2811448641 hasConceptScore W2811448641C72563966 @default.
- W2811448641 hasConceptScore W2811448641C8337478 @default.
- W2811448641 hasConceptScore W2811448641C99454951 @default.
- W2811448641 hasIssue "6" @default.
- W2811448641 hasLocation W28114486411 @default.
- W2811448641 hasLocation W28114486412 @default.
- W2811448641 hasLocation W28114486413 @default.
- W2811448641 hasLocation W28114486414 @default.
- W2811448641 hasLocation W28114486415 @default.
- W2811448641 hasOpenAccess W2811448641 @default.
- W2811448641 hasPrimaryLocation W28114486411 @default.
- W2811448641 hasRelatedWork W1586374228 @default.
- W2811448641 hasRelatedWork W2003938723 @default.
- W2811448641 hasRelatedWork W2047967234 @default.
- W2811448641 hasRelatedWork W2118496982 @default.
- W2811448641 hasRelatedWork W2364998975 @default.
- W2811448641 hasRelatedWork W2369162477 @default.