Matches in SemOpenAlex for { <https://semopenalex.org/work/W2811492042> ?p ?o ?g. }
- W2811492042 endingPage "32LT03" @default.
- W2811492042 startingPage "32LT03" @default.
- W2811492042 abstract "In this work, we present a new method for predicting complex physical-chemical properties of organic molecules. The approach utilizes 3D convolutional neural network (ActivNet4) that uses solvent spatial distributions around solutes as input. These spatial distributions are obtained by a molecular theory called three-dimensional reference interaction site model. We have shown that the method allows one to achieve a good accuracy of prediction of bioconcentration factor which is difficult to predict by direct application of methods of molecular theory or simulations. Our research demonstrates that combination of molecular theories with modern machine learning approaches can be effectively used for predicting properties that are otherwise inaccessible to purely theory-based models." @default.
- W2811492042 created "2018-07-10" @default.
- W2811492042 creator A5014755535 @default.
- W2811492042 creator A5069304320 @default.
- W2811492042 creator A5070076249 @default.
- W2811492042 creator A5087735995 @default.
- W2811492042 date "2018-07-19" @default.
- W2811492042 modified "2023-09-25" @default.
- W2811492042 title "3D matters! 3D-RISM and 3D convolutional neural network for accurate bioaccumulation prediction" @default.
- W2811492042 cites W1880030727 @default.
- W2811492042 cites W1976848779 @default.
- W2811492042 cites W1990399577 @default.
- W2811492042 cites W1990617637 @default.
- W2811492042 cites W1999273805 @default.
- W2811492042 cites W1999798000 @default.
- W2811492042 cites W2000702472 @default.
- W2811492042 cites W2002431986 @default.
- W2811492042 cites W2016412681 @default.
- W2811492042 cites W2018113064 @default.
- W2811492042 cites W2021133788 @default.
- W2811492042 cites W2026569704 @default.
- W2811492042 cites W2027296812 @default.
- W2811492042 cites W2030971064 @default.
- W2811492042 cites W2031420338 @default.
- W2811492042 cites W2037176511 @default.
- W2811492042 cites W2037535298 @default.
- W2811492042 cites W2057868137 @default.
- W2811492042 cites W2064969595 @default.
- W2811492042 cites W2070442000 @default.
- W2811492042 cites W2071242009 @default.
- W2811492042 cites W2073662804 @default.
- W2811492042 cites W2076195008 @default.
- W2811492042 cites W2079280953 @default.
- W2811492042 cites W2081709350 @default.
- W2811492042 cites W2110603811 @default.
- W2811492042 cites W2121695928 @default.
- W2811492042 cites W2131754023 @default.
- W2811492042 cites W2143598945 @default.
- W2811492042 cites W2170482285 @default.
- W2811492042 cites W2213475114 @default.
- W2811492042 cites W2277249624 @default.
- W2811492042 cites W2290847742 @default.
- W2811492042 cites W2329064524 @default.
- W2811492042 cites W2378074933 @default.
- W2811492042 cites W2489848794 @default.
- W2811492042 cites W2547914817 @default.
- W2811492042 cites W2556851635 @default.
- W2811492042 cites W2619205025 @default.
- W2811492042 cites W3103239361 @default.
- W2811492042 doi "https://doi.org/10.1088/1361-648x/aad076" @default.
- W2811492042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29964270" @default.
- W2811492042 hasPublicationYear "2018" @default.
- W2811492042 type Work @default.
- W2811492042 sameAs 2811492042 @default.
- W2811492042 citedByCount "15" @default.
- W2811492042 countsByYear W28114920422019 @default.
- W2811492042 countsByYear W28114920422020 @default.
- W2811492042 countsByYear W28114920422021 @default.
- W2811492042 countsByYear W28114920422022 @default.
- W2811492042 crossrefType "journal-article" @default.
- W2811492042 hasAuthorship W2811492042A5014755535 @default.
- W2811492042 hasAuthorship W2811492042A5069304320 @default.
- W2811492042 hasAuthorship W2811492042A5070076249 @default.
- W2811492042 hasAuthorship W2811492042A5087735995 @default.
- W2811492042 hasBestOaLocation W28114920422 @default.
- W2811492042 hasConcept C11413529 @default.
- W2811492042 hasConcept C119857082 @default.
- W2811492042 hasConcept C121332964 @default.
- W2811492042 hasConcept C154945302 @default.
- W2811492042 hasConcept C178790620 @default.
- W2811492042 hasConcept C185592680 @default.
- W2811492042 hasConcept C186060115 @default.
- W2811492042 hasConcept C18762648 @default.
- W2811492042 hasConcept C41008148 @default.
- W2811492042 hasConcept C50644808 @default.
- W2811492042 hasConcept C61952481 @default.
- W2811492042 hasConcept C71572567 @default.
- W2811492042 hasConcept C81363708 @default.
- W2811492042 hasConcept C86803240 @default.
- W2811492042 hasConcept C97355855 @default.
- W2811492042 hasConceptScore W2811492042C11413529 @default.
- W2811492042 hasConceptScore W2811492042C119857082 @default.
- W2811492042 hasConceptScore W2811492042C121332964 @default.
- W2811492042 hasConceptScore W2811492042C154945302 @default.
- W2811492042 hasConceptScore W2811492042C178790620 @default.
- W2811492042 hasConceptScore W2811492042C185592680 @default.
- W2811492042 hasConceptScore W2811492042C186060115 @default.
- W2811492042 hasConceptScore W2811492042C18762648 @default.
- W2811492042 hasConceptScore W2811492042C41008148 @default.
- W2811492042 hasConceptScore W2811492042C50644808 @default.
- W2811492042 hasConceptScore W2811492042C61952481 @default.
- W2811492042 hasConceptScore W2811492042C71572567 @default.
- W2811492042 hasConceptScore W2811492042C81363708 @default.
- W2811492042 hasConceptScore W2811492042C86803240 @default.
- W2811492042 hasConceptScore W2811492042C97355855 @default.
- W2811492042 hasIssue "32" @default.
- W2811492042 hasLocation W28114920421 @default.
- W2811492042 hasLocation W28114920422 @default.