Matches in SemOpenAlex for { <https://semopenalex.org/work/W2823189857> ?p ?o ?g. }
- W2823189857 abstract "ABSTRACT In this paper, we evaluated the power of metagenome measures taken at three time points over the growth test period (weaning, 15 and 22 weeks) to foretell growth and carcass traits in 1039 individuals of a line of crossbred pigs. We measured prediction accuracy as the correlation between actual and predicted phenotypes in a five-fold cross-validation setting. Phenotypic traits measured included live weight measures and carcass composition obtained during the trial as well as at slaughter. We employed a null model excluding microbiome information as a baseline to assess the increase in prediction accuracy stemming from the inclusion of operational taxonomic units (OTU) as predictors. We further contrasted performance of models from the Bayesian alphabet (Bayesian Lasso) as well machine learning approaches (Random Forest and Gradient Boosting) and semi-parametric kernel models (Reproducing Kernel Hilbert space). In most cases, prediction accuracy increased significantly with the inclusion of microbiome data. Accuracy was more substantial with the inclusion of metagenomic information taken at week 15 and 22, with values ranging from approximately 0.30 for loin traits to more than 0.50 for back-fat. Conversely, microbiome composition at weaning resulted in most cases in marginal gains of prediction accuracy, suggesting that later measures might be more useful to include in predictive models. Model choice affected predictions marginally with no clear winner for any model/trait/time point. We, therefore, suggest average prediction across models as a robust strategy in fitting metagenomic information. In conclusion, microbiome composition can effectively be used as a predictor of growth and composition traits, particularly for fatness traits. The inclusion of OTU predictors could potentially be used to promote fast growth of individuals while limiting fat accumulation. Early microbiome measures might not be good predictors of growth and OTU information might be best collected at later life stages. Future research should focus on the inclusion of both microbiome as well as host genome information in predictions, as well as the interaction between the two. Furthermore, the influence of microbiome on feed efficiency as well as carcass and meat quality should be investigated." @default.
- W2823189857 created "2018-07-19" @default.
- W2823189857 creator A5010942494 @default.
- W2823189857 creator A5016462805 @default.
- W2823189857 creator A5040640437 @default.
- W2823189857 creator A5049846480 @default.
- W2823189857 creator A5062053859 @default.
- W2823189857 creator A5082393146 @default.
- W2823189857 creator A5091077026 @default.
- W2823189857 date "2018-07-06" @default.
- W2823189857 modified "2023-10-16" @default.
- W2823189857 title "Predicting Growth and Carcass Traits in Swine Using Metagenomic Data and Machine Learning Algorithms" @default.
- W2823189857 cites W1547360879 @default.
- W2823189857 cites W1678356000 @default.
- W2823189857 cites W1970149620 @default.
- W2823189857 cites W1976415646 @default.
- W2823189857 cites W1983166354 @default.
- W2823189857 cites W1986084863 @default.
- W2823189857 cites W1993399595 @default.
- W2823189857 cites W2005393148 @default.
- W2823189857 cites W2008627263 @default.
- W2823189857 cites W2017662324 @default.
- W2823189857 cites W2023630186 @default.
- W2823189857 cites W2034433729 @default.
- W2823189857 cites W2036021083 @default.
- W2823189857 cites W2072970694 @default.
- W2823189857 cites W2074152062 @default.
- W2823189857 cites W2081516817 @default.
- W2823189857 cites W2109349581 @default.
- W2823189857 cites W2109628770 @default.
- W2823189857 cites W2110909546 @default.
- W2823189857 cites W2120269491 @default.
- W2823189857 cites W2121180999 @default.
- W2823189857 cites W2124351063 @default.
- W2823189857 cites W2130434665 @default.
- W2823189857 cites W2132481658 @default.
- W2823189857 cites W2137195441 @default.
- W2823189857 cites W2142870653 @default.
- W2823189857 cites W2145336165 @default.
- W2823189857 cites W2154562310 @default.
- W2823189857 cites W2154909789 @default.
- W2823189857 cites W2157107905 @default.
- W2823189857 cites W2159255279 @default.
- W2823189857 cites W2178363899 @default.
- W2823189857 cites W2294145430 @default.
- W2823189857 cites W2393202809 @default.
- W2823189857 cites W2473355215 @default.
- W2823189857 cites W2521321100 @default.
- W2823189857 cites W2563417622 @default.
- W2823189857 cites W2611180177 @default.
- W2823189857 cites W2614658198 @default.
- W2823189857 cites W2622922376 @default.
- W2823189857 cites W2730282808 @default.
- W2823189857 cites W2732972012 @default.
- W2823189857 cites W2738333738 @default.
- W2823189857 cites W2749698743 @default.
- W2823189857 cites W2782278194 @default.
- W2823189857 cites W2792230618 @default.
- W2823189857 cites W2823189857 @default.
- W2823189857 cites W2911964244 @default.
- W2823189857 doi "https://doi.org/10.1101/363309" @default.
- W2823189857 hasPublicationYear "2018" @default.
- W2823189857 type Work @default.
- W2823189857 sameAs 2823189857 @default.
- W2823189857 citedByCount "2" @default.
- W2823189857 countsByYear W28231898572018 @default.
- W2823189857 countsByYear W28231898572019 @default.
- W2823189857 crossrefType "posted-content" @default.
- W2823189857 hasAuthorship W2823189857A5010942494 @default.
- W2823189857 hasAuthorship W2823189857A5016462805 @default.
- W2823189857 hasAuthorship W2823189857A5040640437 @default.
- W2823189857 hasAuthorship W2823189857A5049846480 @default.
- W2823189857 hasAuthorship W2823189857A5062053859 @default.
- W2823189857 hasAuthorship W2823189857A5082393146 @default.
- W2823189857 hasAuthorship W2823189857A5091077026 @default.
- W2823189857 hasBestOaLocation W28231898571 @default.
- W2823189857 hasConcept C104317684 @default.
- W2823189857 hasConcept C105795698 @default.
- W2823189857 hasConcept C106934330 @default.
- W2823189857 hasConcept C107673813 @default.
- W2823189857 hasConcept C11413529 @default.
- W2823189857 hasConcept C119857082 @default.
- W2823189857 hasConcept C12267149 @default.
- W2823189857 hasConcept C126322002 @default.
- W2823189857 hasConcept C143121216 @default.
- W2823189857 hasConcept C15151743 @default.
- W2823189857 hasConcept C154945302 @default.
- W2823189857 hasConcept C168743327 @default.
- W2823189857 hasConcept C199360897 @default.
- W2823189857 hasConcept C33923547 @default.
- W2823189857 hasConcept C41008148 @default.
- W2823189857 hasConcept C54355233 @default.
- W2823189857 hasConcept C60644358 @default.
- W2823189857 hasConcept C71924100 @default.
- W2823189857 hasConcept C86803240 @default.
- W2823189857 hasConcept C95190672 @default.
- W2823189857 hasConceptScore W2823189857C104317684 @default.
- W2823189857 hasConceptScore W2823189857C105795698 @default.
- W2823189857 hasConceptScore W2823189857C106934330 @default.
- W2823189857 hasConceptScore W2823189857C107673813 @default.