Matches in SemOpenAlex for { <https://semopenalex.org/work/W2829444108> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2829444108 abstract "Understanding the structure and complexity of a polynomial family is a fundamental problem of arithmetic circuit complexity. There are various approaches like studying the lower bounds, which deals with nding the smallest circuit required to compute a polynomial, studying the orbit and stabilizer of a polynomial with respect to an invertible transformation etc to do this. We have a rich understanding of some of the well known polynomial families like determinant, permanent, IMM etc. In this thesis we study some of the structural properties of the polyno-mial family called the Nisan-Wigderson polynomial family. This polynomial family is inspired from a well known combinatorial design called Nisan-Wigderson design and is recently used to prove strong lower bounds on some restricted classes of arithmetic circuits ([KSS14],[KLSS14], [KST16]). But unlike determinant, permanent, IMM etc, our understanding of the Nisan-Wigderson polynomial family is inadequate. For example we do not know if this polynomial family is in VP or VNP complete or VNP-intermediate assuming VP 6= VNP, nor do we have an understanding of the complexity of its equivalence test. We hope that the knowledge of some of the inherent properties of Nisan-Wigderson polynomial like group of symmetries and Lie algebra would provide us some insights in this regard. A matrix A 2 GLn(F) is called a symmetry of an n-variate polynomial f if f(A x) = f(x): The set of symmetries of f forms a subgroup of GLn(F), which is also known as group of symmetries of f, denoted Gf . A vector space is attached to Gf to get the complete understanding of the symmetries of f. This vector space is known as the Lie algebra of group of symmetries of f (or Lie algebra of f), represented as gf . Lie algebra of f contributes some elements of Gf , known as continuous symmetries of f. Lie algebra has also been instrumental in designing e cient randomized equivalence tests for some polynomial families like determinant, permanent, IMM etc ([Kay12], [KNST17]). In this work we completely characterize the Lie algebra of the Nisan-Wigderson polynomial family. We show that gNW contains diagonal matrices of a speci c type. The knowledge of gNW not only helps us to completely gure out the continuous symmetries of the Nisan-Wigderson polynomial family, but also gives some crucial insights into the other symmetries of Nisan-Wigderson polynomial (i.e. the discrete symmetries). Thereafter using the Hessian matrix of the Nisan-Wigderson polynomial and the concept of evaluation dimension, we are able to almost completely identify the structure of GNW . In particular we prove that any A 2 GNW is a product of diagonal and permutation matrices of certain kind that we call block-permuted permutation matrix. Finally, we give explicit examples of nontrivial block-permuted permutation matrices using the automorphisms of nite eld that establishes the richness of the discrete symmetries of the Nisan-Wigderson polynomial family." @default.
- W2829444108 created "2018-07-19" @default.
- W2829444108 creator A5038083371 @default.
- W2829444108 date "2017-01-01" @default.
- W2829444108 modified "2023-09-27" @default.
- W2829444108 title "Towards a Charcterization of the Symmetries of the Nisan-Wigderson Polynomial Family" @default.
- W2829444108 hasPublicationYear "2017" @default.
- W2829444108 type Work @default.
- W2829444108 sameAs 2829444108 @default.
- W2829444108 citedByCount "0" @default.
- W2829444108 crossrefType "dissertation" @default.
- W2829444108 hasAuthorship W2829444108A5038083371 @default.
- W2829444108 hasConcept C101044782 @default.
- W2829444108 hasConcept C114614502 @default.
- W2829444108 hasConcept C118615104 @default.
- W2829444108 hasConcept C134306372 @default.
- W2829444108 hasConcept C170412648 @default.
- W2829444108 hasConcept C202444582 @default.
- W2829444108 hasConcept C2524010 @default.
- W2829444108 hasConcept C33923547 @default.
- W2829444108 hasConcept C45025165 @default.
- W2829444108 hasConcept C90119067 @default.
- W2829444108 hasConcept C96442724 @default.
- W2829444108 hasConcept C96469262 @default.
- W2829444108 hasConceptScore W2829444108C101044782 @default.
- W2829444108 hasConceptScore W2829444108C114614502 @default.
- W2829444108 hasConceptScore W2829444108C118615104 @default.
- W2829444108 hasConceptScore W2829444108C134306372 @default.
- W2829444108 hasConceptScore W2829444108C170412648 @default.
- W2829444108 hasConceptScore W2829444108C202444582 @default.
- W2829444108 hasConceptScore W2829444108C2524010 @default.
- W2829444108 hasConceptScore W2829444108C33923547 @default.
- W2829444108 hasConceptScore W2829444108C45025165 @default.
- W2829444108 hasConceptScore W2829444108C90119067 @default.
- W2829444108 hasConceptScore W2829444108C96442724 @default.
- W2829444108 hasConceptScore W2829444108C96469262 @default.
- W2829444108 hasLocation W28294441081 @default.
- W2829444108 hasOpenAccess W2829444108 @default.
- W2829444108 hasPrimaryLocation W28294441081 @default.
- W2829444108 hasRelatedWork W132741096 @default.
- W2829444108 hasRelatedWork W1501568769 @default.
- W2829444108 hasRelatedWork W1652127109 @default.
- W2829444108 hasRelatedWork W1867119118 @default.
- W2829444108 hasRelatedWork W1906465869 @default.
- W2829444108 hasRelatedWork W1975582391 @default.
- W2829444108 hasRelatedWork W1976750632 @default.
- W2829444108 hasRelatedWork W1988821632 @default.
- W2829444108 hasRelatedWork W2002250720 @default.
- W2829444108 hasRelatedWork W2065314083 @default.
- W2829444108 hasRelatedWork W2074940796 @default.
- W2829444108 hasRelatedWork W2151904488 @default.
- W2829444108 hasRelatedWork W2177174202 @default.
- W2829444108 hasRelatedWork W2355254823 @default.
- W2829444108 hasRelatedWork W2404794569 @default.
- W2829444108 hasRelatedWork W2626372708 @default.
- W2829444108 hasRelatedWork W2810664674 @default.
- W2829444108 hasRelatedWork W2950817942 @default.
- W2829444108 hasRelatedWork W2963709672 @default.
- W2829444108 hasRelatedWork W3113087031 @default.
- W2829444108 isParatext "false" @default.
- W2829444108 isRetracted "false" @default.
- W2829444108 magId "2829444108" @default.
- W2829444108 workType "dissertation" @default.