Matches in SemOpenAlex for { <https://semopenalex.org/work/W2829536470> ?p ?o ?g. }
- W2829536470 endingPage "614" @default.
- W2829536470 startingPage "601" @default.
- W2829536470 abstract "An artificial neural network (ANN) that mimics the information processing mechanisms and procedures of neurons in human brains has achieved a great success in many fields, e.g., classification, prediction, and control. However, traditional ANNs suffer from many problems, such as the hard understanding problem, the slow and difficult training problems, and the difficulty to scale them up. These problems motivate us to develop a new dendritic neuron model (DNM) by considering the nonlinearity of synapses, not only for a better understanding of a biological neuronal system, but also for providing a more useful method for solving practical problems. To achieve its better performance for solving problems, six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, and population-based incremental learning are for the first time used to train it. The best combination of its user-defined parameters has been systemically investigated by using the Taguchi's experimental design method. The experiments on 14 different problems involving classification, approximation, and prediction are conducted by using a multilayer perceptron and the proposed DNM. The results suggest that the proposed learning algorithms are effective and promising for training DNM and thus make DNM more powerful in solving classification, approximation, and prediction problems." @default.
- W2829536470 created "2018-07-19" @default.
- W2829536470 creator A5010245958 @default.
- W2829536470 creator A5022399023 @default.
- W2829536470 creator A5043252003 @default.
- W2829536470 creator A5044010230 @default.
- W2829536470 creator A5081318069 @default.
- W2829536470 creator A5083383494 @default.
- W2829536470 date "2019-02-01" @default.
- W2829536470 modified "2023-10-11" @default.
- W2829536470 title "Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction" @default.
- W2829536470 cites W1488737327 @default.
- W2829536470 cites W1554487381 @default.
- W2829536470 cites W1792666317 @default.
- W2829536470 cites W1847716059 @default.
- W2829536470 cites W1888884532 @default.
- W2829536470 cites W1892221894 @default.
- W2829536470 cites W1975009952 @default.
- W2829536470 cites W1975682709 @default.
- W2829536470 cites W1992646289 @default.
- W2829536470 cites W1993988509 @default.
- W2829536470 cites W1995341919 @default.
- W2829536470 cites W1999380910 @default.
- W2829536470 cites W2007141058 @default.
- W2829536470 cites W2009207660 @default.
- W2829536470 cites W2015304908 @default.
- W2829536470 cites W2017115408 @default.
- W2829536470 cites W2020134397 @default.
- W2829536470 cites W2033731173 @default.
- W2829536470 cites W2038108866 @default.
- W2829536470 cites W2042746038 @default.
- W2829536470 cites W2044459470 @default.
- W2829536470 cites W2047598284 @default.
- W2829536470 cites W2051152418 @default.
- W2829536470 cites W2051680981 @default.
- W2829536470 cites W2054030210 @default.
- W2829536470 cites W2056091670 @default.
- W2829536470 cites W2056398894 @default.
- W2829536470 cites W2061594663 @default.
- W2829536470 cites W2065943966 @default.
- W2829536470 cites W2075181706 @default.
- W2829536470 cites W2079143456 @default.
- W2829536470 cites W2080525614 @default.
- W2829536470 cites W2081808304 @default.
- W2829536470 cites W2089101854 @default.
- W2829536470 cites W2094314072 @default.
- W2829536470 cites W2100940538 @default.
- W2829536470 cites W2103381221 @default.
- W2829536470 cites W2109364787 @default.
- W2829536470 cites W2110323906 @default.
- W2829536470 cites W2116424792 @default.
- W2829536470 cites W2120527268 @default.
- W2829536470 cites W2122637050 @default.
- W2829536470 cites W2124531803 @default.
- W2829536470 cites W2126964472 @default.
- W2829536470 cites W2132384827 @default.
- W2829536470 cites W2137699621 @default.
- W2829536470 cites W2137983211 @default.
- W2829536470 cites W2138784882 @default.
- W2829536470 cites W2143291553 @default.
- W2829536470 cites W2143908786 @default.
- W2829536470 cites W2151554678 @default.
- W2829536470 cites W2156773695 @default.
- W2829536470 cites W2161205534 @default.
- W2829536470 cites W2164531580 @default.
- W2829536470 cites W2168081761 @default.
- W2829536470 cites W2265299158 @default.
- W2829536470 cites W2286961399 @default.
- W2829536470 cites W2301541953 @default.
- W2829536470 cites W2304309600 @default.
- W2829536470 cites W2316060816 @default.
- W2829536470 cites W2402395425 @default.
- W2829536470 cites W2418288522 @default.
- W2829536470 cites W2440756100 @default.
- W2829536470 cites W2464889299 @default.
- W2829536470 cites W2555678787 @default.
- W2829536470 cites W2561339368 @default.
- W2829536470 cites W2579195240 @default.
- W2829536470 cites W2595448953 @default.
- W2829536470 cites W2751355013 @default.
- W2829536470 cites W2754369820 @default.
- W2829536470 cites W2779598397 @default.
- W2829536470 cites W2798741797 @default.
- W2829536470 cites W2952939271 @default.
- W2829536470 cites W4247763225 @default.
- W2829536470 cites W4292083457 @default.
- W2829536470 doi "https://doi.org/10.1109/tnnls.2018.2846646" @default.
- W2829536470 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30004892" @default.
- W2829536470 hasPublicationYear "2019" @default.
- W2829536470 type Work @default.
- W2829536470 sameAs 2829536470 @default.
- W2829536470 citedByCount "473" @default.
- W2829536470 countsByYear W28295364702018 @default.
- W2829536470 countsByYear W28295364702019 @default.
- W2829536470 countsByYear W28295364702020 @default.
- W2829536470 countsByYear W28295364702021 @default.
- W2829536470 countsByYear W28295364702022 @default.
- W2829536470 countsByYear W28295364702023 @default.