Matches in SemOpenAlex for { <https://semopenalex.org/work/W2829793374> ?p ?o ?g. }
- W2829793374 abstract "In this paper, we focus on the problem of cells objects counting. We propose a novel deep learning framework for small object counting named Unite CNN (U-CNN). The U-CNN is used as a regression model to learn the characteristics of input patches. The result of our model output is the density map. Density map can get the exact count of cells, and we can see the location of cell distribution. The regression network predicts a count of the objects that exit inside this frame. Unite CNN learns a multiscale non-linear regression model which uses a pyramid of image patches extracted at multiple scales to perform the final density prediction. We use three different cell counting benchmarks (MAE, MSE, GAME). Our method is tested on the cell pictures under microscope and shown to outperform the state of the art methods." @default.
- W2829793374 created "2018-07-19" @default.
- W2829793374 creator A5014814271 @default.
- W2829793374 creator A5040040696 @default.
- W2829793374 creator A5050187000 @default.
- W2829793374 creator A5071672663 @default.
- W2829793374 creator A5076794753 @default.
- W2829793374 date "2018-01-01" @default.
- W2829793374 modified "2023-09-23" @default.
- W2829793374 title "Cells Counting with Convolutional Neural Network" @default.
- W2829793374 cites W116833144 @default.
- W2829793374 cites W1203557841 @default.
- W2829793374 cites W1910776219 @default.
- W2829793374 cites W2072232009 @default.
- W2829793374 cites W2133003941 @default.
- W2829793374 cites W2155893237 @default.
- W2829793374 cites W2207893099 @default.
- W2829793374 cites W2463631526 @default.
- W2829793374 cites W2517615595 @default.
- W2829793374 cites W2519281173 @default.
- W2829793374 doi "https://doi.org/10.1007/978-3-319-95957-3_12" @default.
- W2829793374 hasPublicationYear "2018" @default.
- W2829793374 type Work @default.
- W2829793374 sameAs 2829793374 @default.
- W2829793374 citedByCount "2" @default.
- W2829793374 countsByYear W28297933742019 @default.
- W2829793374 countsByYear W28297933742021 @default.
- W2829793374 crossrefType "book-chapter" @default.
- W2829793374 hasAuthorship W2829793374A5014814271 @default.
- W2829793374 hasAuthorship W2829793374A5040040696 @default.
- W2829793374 hasAuthorship W2829793374A5050187000 @default.
- W2829793374 hasAuthorship W2829793374A5071672663 @default.
- W2829793374 hasAuthorship W2829793374A5076794753 @default.
- W2829793374 hasConcept C105795698 @default.
- W2829793374 hasConcept C108583219 @default.
- W2829793374 hasConcept C115961682 @default.
- W2829793374 hasConcept C120665830 @default.
- W2829793374 hasConcept C121332964 @default.
- W2829793374 hasConcept C126042441 @default.
- W2829793374 hasConcept C142575187 @default.
- W2829793374 hasConcept C1491633281 @default.
- W2829793374 hasConcept C153180895 @default.
- W2829793374 hasConcept C154945302 @default.
- W2829793374 hasConcept C192209626 @default.
- W2829793374 hasConcept C2524010 @default.
- W2829793374 hasConcept C2583947 @default.
- W2829793374 hasConcept C2781238097 @default.
- W2829793374 hasConcept C29537977 @default.
- W2829793374 hasConcept C31972630 @default.
- W2829793374 hasConcept C33923547 @default.
- W2829793374 hasConcept C41008148 @default.
- W2829793374 hasConcept C54355233 @default.
- W2829793374 hasConcept C76155785 @default.
- W2829793374 hasConcept C81363708 @default.
- W2829793374 hasConcept C83546350 @default.
- W2829793374 hasConcept C86803240 @default.
- W2829793374 hasConceptScore W2829793374C105795698 @default.
- W2829793374 hasConceptScore W2829793374C108583219 @default.
- W2829793374 hasConceptScore W2829793374C115961682 @default.
- W2829793374 hasConceptScore W2829793374C120665830 @default.
- W2829793374 hasConceptScore W2829793374C121332964 @default.
- W2829793374 hasConceptScore W2829793374C126042441 @default.
- W2829793374 hasConceptScore W2829793374C142575187 @default.
- W2829793374 hasConceptScore W2829793374C1491633281 @default.
- W2829793374 hasConceptScore W2829793374C153180895 @default.
- W2829793374 hasConceptScore W2829793374C154945302 @default.
- W2829793374 hasConceptScore W2829793374C192209626 @default.
- W2829793374 hasConceptScore W2829793374C2524010 @default.
- W2829793374 hasConceptScore W2829793374C2583947 @default.
- W2829793374 hasConceptScore W2829793374C2781238097 @default.
- W2829793374 hasConceptScore W2829793374C29537977 @default.
- W2829793374 hasConceptScore W2829793374C31972630 @default.
- W2829793374 hasConceptScore W2829793374C33923547 @default.
- W2829793374 hasConceptScore W2829793374C41008148 @default.
- W2829793374 hasConceptScore W2829793374C54355233 @default.
- W2829793374 hasConceptScore W2829793374C76155785 @default.
- W2829793374 hasConceptScore W2829793374C81363708 @default.
- W2829793374 hasConceptScore W2829793374C83546350 @default.
- W2829793374 hasConceptScore W2829793374C86803240 @default.
- W2829793374 hasLocation W28297933741 @default.
- W2829793374 hasOpenAccess W2829793374 @default.
- W2829793374 hasPrimaryLocation W28297933741 @default.
- W2829793374 hasRelatedWork W2347671639 @default.
- W2829793374 hasRelatedWork W2369088258 @default.
- W2829793374 hasRelatedWork W2398921440 @default.
- W2829793374 hasRelatedWork W2465213351 @default.
- W2829793374 hasRelatedWork W2524369600 @default.
- W2829793374 hasRelatedWork W2788240710 @default.
- W2829793374 hasRelatedWork W2790669298 @default.
- W2829793374 hasRelatedWork W2790784169 @default.
- W2829793374 hasRelatedWork W2802461397 @default.
- W2829793374 hasRelatedWork W2888707409 @default.
- W2829793374 hasRelatedWork W2890886717 @default.
- W2829793374 hasRelatedWork W2961623865 @default.
- W2829793374 hasRelatedWork W2966350404 @default.
- W2829793374 hasRelatedWork W2978283562 @default.
- W2829793374 hasRelatedWork W3011938626 @default.
- W2829793374 hasRelatedWork W3022488996 @default.
- W2829793374 hasRelatedWork W2290553831 @default.
- W2829793374 hasRelatedWork W2768810845 @default.