Matches in SemOpenAlex for { <https://semopenalex.org/work/W2834554860> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2834554860 abstract "Deep learning has attracted so many researchers in the image processing and machine learning communities. So many new applications have been presented with DL day by day. Thus, in this paper, we propose a hybrid approach to detect the optic disc in retinal images by using deep Convolutional Neural Networks (CNN) and K-Nearest Neighbor (KNN) classifier. More specifically, we extract effective deep features from the fc6 layer of a pre-trained CNN model and classify them into optic disc and non-optic disc classes with KNN classifier. The AlexNet is considered for the pre-trained CNN model which extracts 4096 dimensional feature vector for each patch image. To this end, three retinal image datasets are considered for construction of the training and test sets. 500 optic disc patches and 1565 non-optic disc patches of size 280×280 are collected and then resized to 227×227 for feature extraction and construction of the KNN classifier setting. In addition, 165 retinal images are used for testing the presented hybrid approach. A series of experimental works have been carried out for showing the efficiency of the proposed approach. Accuracy, sensitivity and specificity values are calculated. According to the obtained results, 95.74% accuracy, 84.46% sensitivity and 99.08% specificity values are recorded. These results are quite encouraging for related future works." @default.
- W2834554860 created "2018-07-19" @default.
- W2834554860 creator A5004319915 @default.
- W2834554860 creator A5024436465 @default.
- W2834554860 creator A5030161496 @default.
- W2834554860 creator A5033051752 @default.
- W2834554860 creator A5035590902 @default.
- W2834554860 creator A5045216943 @default.
- W2834554860 creator A5053231950 @default.
- W2834554860 date "2018-05-01" @default.
- W2834554860 modified "2023-10-17" @default.
- W2834554860 title "Optic disc determination in retinal images with deep features" @default.
- W2834554860 cites W1535703902 @default.
- W2834554860 cites W1949479385 @default.
- W2834554860 cites W2010991055 @default.
- W2834554860 cites W2049729972 @default.
- W2834554860 cites W2107857626 @default.
- W2834554860 cites W2135914471 @default.
- W2834554860 cites W2297761292 @default.
- W2834554860 cites W2402050431 @default.
- W2834554860 cites W2544408994 @default.
- W2834554860 cites W3098547059 @default.
- W2834554860 cites W612850866 @default.
- W2834554860 doi "https://doi.org/10.1109/siu.2018.8404339" @default.
- W2834554860 hasPublicationYear "2018" @default.
- W2834554860 type Work @default.
- W2834554860 sameAs 2834554860 @default.
- W2834554860 citedByCount "4" @default.
- W2834554860 countsByYear W28345548602018 @default.
- W2834554860 countsByYear W28345548602019 @default.
- W2834554860 countsByYear W28345548602020 @default.
- W2834554860 countsByYear W28345548602022 @default.
- W2834554860 crossrefType "proceedings-article" @default.
- W2834554860 hasAuthorship W2834554860A5004319915 @default.
- W2834554860 hasAuthorship W2834554860A5024436465 @default.
- W2834554860 hasAuthorship W2834554860A5030161496 @default.
- W2834554860 hasAuthorship W2834554860A5033051752 @default.
- W2834554860 hasAuthorship W2834554860A5035590902 @default.
- W2834554860 hasAuthorship W2834554860A5045216943 @default.
- W2834554860 hasAuthorship W2834554860A5053231950 @default.
- W2834554860 hasConcept C118487528 @default.
- W2834554860 hasConcept C154945302 @default.
- W2834554860 hasConcept C2779735895 @default.
- W2834554860 hasConcept C2780827179 @default.
- W2834554860 hasConcept C31972630 @default.
- W2834554860 hasConcept C41008148 @default.
- W2834554860 hasConcept C71924100 @default.
- W2834554860 hasConceptScore W2834554860C118487528 @default.
- W2834554860 hasConceptScore W2834554860C154945302 @default.
- W2834554860 hasConceptScore W2834554860C2779735895 @default.
- W2834554860 hasConceptScore W2834554860C2780827179 @default.
- W2834554860 hasConceptScore W2834554860C31972630 @default.
- W2834554860 hasConceptScore W2834554860C41008148 @default.
- W2834554860 hasConceptScore W2834554860C71924100 @default.
- W2834554860 hasLocation W28345548601 @default.
- W2834554860 hasOpenAccess W2834554860 @default.
- W2834554860 hasPrimaryLocation W28345548601 @default.
- W2834554860 hasRelatedWork W1891287906 @default.
- W2834554860 hasRelatedWork W1969923398 @default.
- W2834554860 hasRelatedWork W2021592657 @default.
- W2834554860 hasRelatedWork W2036807459 @default.
- W2834554860 hasRelatedWork W2058170566 @default.
- W2834554860 hasRelatedWork W2110717643 @default.
- W2834554860 hasRelatedWork W2229312674 @default.
- W2834554860 hasRelatedWork W2755342338 @default.
- W2834554860 hasRelatedWork W2772917594 @default.
- W2834554860 hasRelatedWork W3116076068 @default.
- W2834554860 isParatext "false" @default.
- W2834554860 isRetracted "false" @default.
- W2834554860 magId "2834554860" @default.
- W2834554860 workType "article" @default.