Matches in SemOpenAlex for { <https://semopenalex.org/work/W2834593189> ?p ?o ?g. }
- W2834593189 abstract "Efficient Euclidean minimum spanning tree algorithms have been proposed for large scale datasets which run typically in time near linear in the size of the data but may not usually be feasible for high-dimensional data. For data consisting of sparse vectors in high-dimensional feature spaces, however, the calculations of an approximate EMST can be largely independent of the feature space dimension. Taking this observation into consideration, in this paper, we propose a new two- stage approximate Euclidean minimum spanning tree algorithm. In the first stage, we perform the standard Prim’s MST algorithm using Cosine similarity measure for high-dimensional sparse datasets to reduce the computation expense. In the second stage, we use the MST obtained in the first stage to complete an approximate Euclidean Minimum Spanning Tree construction process. Experimental results for color image segmentation demonstrate the efficiency of the proposed method, while keeping high approximate precision." @default.
- W2834593189 created "2018-07-19" @default.
- W2834593189 creator A5008844169 @default.
- W2834593189 creator A5031706715 @default.
- W2834593189 date "2018-01-01" @default.
- W2834593189 modified "2023-09-27" @default.
- W2834593189 title "An Efficient Approximate EMST Algorithm for Color Image Segmentation" @default.
- W2834593189 cites W1664309637 @default.
- W2834593189 cites W1965680834 @default.
- W2834593189 cites W1972969203 @default.
- W2834593189 cites W1973662756 @default.
- W2834593189 cites W1992843866 @default.
- W2834593189 cites W1995042400 @default.
- W2834593189 cites W2017927472 @default.
- W2834593189 cites W2018359542 @default.
- W2834593189 cites W2034887891 @default.
- W2834593189 cites W2067298033 @default.
- W2834593189 cites W2084642062 @default.
- W2834593189 cites W2109343068 @default.
- W2834593189 cites W2127284416 @default.
- W2834593189 cites W2132192618 @default.
- W2834593189 cites W2141376824 @default.
- W2834593189 cites W2158319614 @default.
- W2834593189 cites W2169528473 @default.
- W2834593189 cites W2541335910 @default.
- W2834593189 cites W2911302472 @default.
- W2834593189 doi "https://doi.org/10.1007/978-3-319-96133-0_11" @default.
- W2834593189 hasPublicationYear "2018" @default.
- W2834593189 type Work @default.
- W2834593189 sameAs 2834593189 @default.
- W2834593189 citedByCount "0" @default.
- W2834593189 crossrefType "book-chapter" @default.
- W2834593189 hasAuthorship W2834593189A5008844169 @default.
- W2834593189 hasAuthorship W2834593189A5031706715 @default.
- W2834593189 hasConcept C113174947 @default.
- W2834593189 hasConcept C11413529 @default.
- W2834593189 hasConcept C114614502 @default.
- W2834593189 hasConcept C120174047 @default.
- W2834593189 hasConcept C124504099 @default.
- W2834593189 hasConcept C134306372 @default.
- W2834593189 hasConcept C13743678 @default.
- W2834593189 hasConcept C138885662 @default.
- W2834593189 hasConcept C145685049 @default.
- W2834593189 hasConcept C154945302 @default.
- W2834593189 hasConcept C202444582 @default.
- W2834593189 hasConcept C2776401178 @default.
- W2834593189 hasConcept C33676613 @default.
- W2834593189 hasConcept C33923547 @default.
- W2834593189 hasConcept C41008148 @default.
- W2834593189 hasConcept C41895202 @default.
- W2834593189 hasConcept C45374587 @default.
- W2834593189 hasConcept C63645285 @default.
- W2834593189 hasConcept C64331007 @default.
- W2834593189 hasConcept C89600930 @default.
- W2834593189 hasConceptScore W2834593189C113174947 @default.
- W2834593189 hasConceptScore W2834593189C11413529 @default.
- W2834593189 hasConceptScore W2834593189C114614502 @default.
- W2834593189 hasConceptScore W2834593189C120174047 @default.
- W2834593189 hasConceptScore W2834593189C124504099 @default.
- W2834593189 hasConceptScore W2834593189C134306372 @default.
- W2834593189 hasConceptScore W2834593189C13743678 @default.
- W2834593189 hasConceptScore W2834593189C138885662 @default.
- W2834593189 hasConceptScore W2834593189C145685049 @default.
- W2834593189 hasConceptScore W2834593189C154945302 @default.
- W2834593189 hasConceptScore W2834593189C202444582 @default.
- W2834593189 hasConceptScore W2834593189C2776401178 @default.
- W2834593189 hasConceptScore W2834593189C33676613 @default.
- W2834593189 hasConceptScore W2834593189C33923547 @default.
- W2834593189 hasConceptScore W2834593189C41008148 @default.
- W2834593189 hasConceptScore W2834593189C41895202 @default.
- W2834593189 hasConceptScore W2834593189C45374587 @default.
- W2834593189 hasConceptScore W2834593189C63645285 @default.
- W2834593189 hasConceptScore W2834593189C64331007 @default.
- W2834593189 hasConceptScore W2834593189C89600930 @default.
- W2834593189 hasLocation W28345931891 @default.
- W2834593189 hasOpenAccess W2834593189 @default.
- W2834593189 hasPrimaryLocation W28345931891 @default.
- W2834593189 hasRelatedWork W1696034530 @default.
- W2834593189 hasRelatedWork W1873260850 @default.
- W2834593189 hasRelatedWork W1978067844 @default.
- W2834593189 hasRelatedWork W1987458256 @default.
- W2834593189 hasRelatedWork W1987966678 @default.
- W2834593189 hasRelatedWork W2002206166 @default.
- W2834593189 hasRelatedWork W2144874270 @default.
- W2834593189 hasRelatedWork W2291440429 @default.
- W2834593189 hasRelatedWork W2317624796 @default.
- W2834593189 hasRelatedWork W2329330207 @default.
- W2834593189 hasRelatedWork W2350028416 @default.
- W2834593189 hasRelatedWork W2350725762 @default.
- W2834593189 hasRelatedWork W2350886669 @default.
- W2834593189 hasRelatedWork W2364281681 @default.
- W2834593189 hasRelatedWork W2372456869 @default.
- W2834593189 hasRelatedWork W2518405968 @default.
- W2834593189 hasRelatedWork W2616755535 @default.
- W2834593189 hasRelatedWork W2906685904 @default.
- W2834593189 hasRelatedWork W3104887029 @default.
- W2834593189 hasRelatedWork W3108151612 @default.
- W2834593189 isParatext "false" @default.
- W2834593189 isRetracted "false" @default.
- W2834593189 magId "2834593189" @default.