Matches in SemOpenAlex for { <https://semopenalex.org/work/W2835914030> ?p ?o ?g. }
- W2835914030 endingPage "179" @default.
- W2835914030 startingPage "168" @default.
- W2835914030 abstract "The solar radiation fluctuation occurs at practically anywhere on the earth. When a solar thermal power generation system is designed for the areas with considerable solar radiation fluctuation, the collector tube exit temperature becomes more difficult to predict and requires significant calculation time. This paper presents a fast and accurate transient thermal prediction method to predict the parabolic trough collector tube exit temperature. In this work, an artificial neural network (ANN) is combined with the principle of superposition. ANN is used to predict the exit temperature rise caused by a single heat flux pulse in the first step of the proposed methodology, while superposition is used to predict the from multiple heat flux pulses in the second step. Limited cases of conjugate heat transfer analytical results by the finite element method (FEM) are used to train the ANN. The one-day exit fluid temperature from 7 a.m. to 6 p.m. is predicted within 1 min of computational time with mean absolute deviation less than 2 K. The exit fluid temperature of the collector tube for one year operation can be predicted in less than 6 h. Because fluid velocity is included in the input parameters, the proposed methodology is especially useful for flow control simulations where a constant exit temperature is targeted. Through this, the optimum performance of collector tube under multiple radiation conditions can be assessed during an early design phase of parabolic solar trough systems. The predicted results can be used for initial system planning, heat balance analysis, and system design. Since the method shows good prediction capability under the fluctuating solar radiation as well as the stable solar radiation, it is applicable to be used for designing the parabolic trough technology at any weather conditions in the world." @default.
- W2835914030 created "2018-07-19" @default.
- W2835914030 creator A5025034926 @default.
- W2835914030 creator A5055978230 @default.
- W2835914030 creator A5062321775 @default.
- W2835914030 creator A5072488226 @default.
- W2835914030 date "2019-02-01" @default.
- W2835914030 modified "2023-10-02" @default.
- W2835914030 title "Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network" @default.
- W2835914030 cites W1139905439 @default.
- W2835914030 cites W1408725054 @default.
- W2835914030 cites W1626156899 @default.
- W2835914030 cites W1964234595 @default.
- W2835914030 cites W1965121957 @default.
- W2835914030 cites W1981401379 @default.
- W2835914030 cites W1981986847 @default.
- W2835914030 cites W1982278884 @default.
- W2835914030 cites W1989505740 @default.
- W2835914030 cites W2003135953 @default.
- W2835914030 cites W2012529489 @default.
- W2835914030 cites W2014821579 @default.
- W2835914030 cites W2018935021 @default.
- W2835914030 cites W2024523659 @default.
- W2835914030 cites W2028495104 @default.
- W2835914030 cites W2030574188 @default.
- W2835914030 cites W2035344589 @default.
- W2835914030 cites W2045902970 @default.
- W2835914030 cites W2049277502 @default.
- W2835914030 cites W2060611854 @default.
- W2835914030 cites W2076975226 @default.
- W2835914030 cites W2087204681 @default.
- W2835914030 cites W2088273496 @default.
- W2835914030 cites W2088874310 @default.
- W2835914030 cites W2089487480 @default.
- W2835914030 cites W2092910536 @default.
- W2835914030 cites W2093680298 @default.
- W2835914030 cites W2119037765 @default.
- W2835914030 cites W2144836449 @default.
- W2835914030 cites W2157803190 @default.
- W2835914030 cites W2168440825 @default.
- W2835914030 cites W2259058087 @default.
- W2835914030 cites W2416810576 @default.
- W2835914030 cites W2485132964 @default.
- W2835914030 cites W985166555 @default.
- W2835914030 cites W1593242299 @default.
- W2835914030 doi "https://doi.org/10.1016/j.renene.2018.07.037" @default.
- W2835914030 hasPublicationYear "2019" @default.
- W2835914030 type Work @default.
- W2835914030 sameAs 2835914030 @default.
- W2835914030 citedByCount "26" @default.
- W2835914030 countsByYear W28359140302019 @default.
- W2835914030 countsByYear W28359140302020 @default.
- W2835914030 countsByYear W28359140302021 @default.
- W2835914030 countsByYear W28359140302022 @default.
- W2835914030 countsByYear W28359140302023 @default.
- W2835914030 crossrefType "journal-article" @default.
- W2835914030 hasAuthorship W2835914030A5025034926 @default.
- W2835914030 hasAuthorship W2835914030A5055978230 @default.
- W2835914030 hasAuthorship W2835914030A5062321775 @default.
- W2835914030 hasAuthorship W2835914030A5072488226 @default.
- W2835914030 hasConcept C111919701 @default.
- W2835914030 hasConcept C119857082 @default.
- W2835914030 hasConcept C121332964 @default.
- W2835914030 hasConcept C154945302 @default.
- W2835914030 hasConcept C159188206 @default.
- W2835914030 hasConcept C183287310 @default.
- W2835914030 hasConcept C192562407 @default.
- W2835914030 hasConcept C204530211 @default.
- W2835914030 hasConcept C27753989 @default.
- W2835914030 hasConcept C2775924081 @default.
- W2835914030 hasConcept C2779473208 @default.
- W2835914030 hasConcept C2780799671 @default.
- W2835914030 hasConcept C2781249646 @default.
- W2835914030 hasConcept C41008148 @default.
- W2835914030 hasConcept C47446073 @default.
- W2835914030 hasConcept C50517652 @default.
- W2835914030 hasConcept C50644808 @default.
- W2835914030 hasConcept C57879066 @default.
- W2835914030 hasConcept C62520636 @default.
- W2835914030 hasConcept C97355855 @default.
- W2835914030 hasConceptScore W2835914030C111919701 @default.
- W2835914030 hasConceptScore W2835914030C119857082 @default.
- W2835914030 hasConceptScore W2835914030C121332964 @default.
- W2835914030 hasConceptScore W2835914030C154945302 @default.
- W2835914030 hasConceptScore W2835914030C159188206 @default.
- W2835914030 hasConceptScore W2835914030C183287310 @default.
- W2835914030 hasConceptScore W2835914030C192562407 @default.
- W2835914030 hasConceptScore W2835914030C204530211 @default.
- W2835914030 hasConceptScore W2835914030C27753989 @default.
- W2835914030 hasConceptScore W2835914030C2775924081 @default.
- W2835914030 hasConceptScore W2835914030C2779473208 @default.
- W2835914030 hasConceptScore W2835914030C2780799671 @default.
- W2835914030 hasConceptScore W2835914030C2781249646 @default.
- W2835914030 hasConceptScore W2835914030C41008148 @default.
- W2835914030 hasConceptScore W2835914030C47446073 @default.
- W2835914030 hasConceptScore W2835914030C50517652 @default.
- W2835914030 hasConceptScore W2835914030C50644808 @default.
- W2835914030 hasConceptScore W2835914030C57879066 @default.