Matches in SemOpenAlex for { <https://semopenalex.org/work/W2844103009> ?p ?o ?g. }
- W2844103009 endingPage "3199" @default.
- W2844103009 startingPage "3199" @default.
- W2844103009 abstract "While millions of individuals show early age-related macular degeneration (AMD) signs, yet have excellent vision, the risk of progression to advanced AMD with legal blindness is highly variable. We suggest means of artificial intelligence to individually predict AMD progression.In eyes with intermediate AMD, progression to the neovascular type with choroidal neovascularization (CNV) or the dry type with geographic atrophy (GA) was diagnosed based on standardized monthly optical coherence tomography (OCT) images by independent graders. We obtained automated volumetric segmentation of outer neurosensory layers and retinal pigment epithelium, drusen, and hyperreflective foci by spectral domain-OCT image analysis. Using imaging, demographic, and genetic input features, we developed and validated a machine learning-based predictive model assessing the risk of conversion to advanced AMD.Of a total of 495 eyes, 159 eyes (32%) had converted to advanced AMD within 2 years, 114 eyes progressed to CNV, and 45 to GA. Our predictive model differentiated converting versus nonconverting eyes with a performance of 0.68 and 0.80 for CNV and GA, respectively. The most critical quantitative features for progression were outer retinal thickness, hyperreflective foci, and drusen area. The features for conversion showed pathognomonic patterns that were distinctly different for the neovascular and the atrophic pathways. Predictive hallmarks for CNV were mostly drusen-centric, while GA markers were associated with neurosensory retina and age.Artificial intelligence with automated analysis of imaging biomarkers allows personalized prediction of AMD progression. Moreover, pathways of progression may be specific in respect to the neovascular/atrophic type." @default.
- W2844103009 created "2018-07-19" @default.
- W2844103009 creator A5007225897 @default.
- W2844103009 creator A5009681360 @default.
- W2844103009 creator A5013494845 @default.
- W2844103009 creator A5013612641 @default.
- W2844103009 creator A5039727719 @default.
- W2844103009 creator A5045723460 @default.
- W2844103009 creator A5053563726 @default.
- W2844103009 creator A5080764284 @default.
- W2844103009 date "2018-07-02" @default.
- W2844103009 modified "2023-10-16" @default.
- W2844103009 title "Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence" @default.
- W2844103009 cites W1458919156 @default.
- W2844103009 cites W1523985187 @default.
- W2844103009 cites W180947891 @default.
- W2844103009 cites W1965083039 @default.
- W2844103009 cites W1981111037 @default.
- W2844103009 cites W1995261728 @default.
- W2844103009 cites W2006652444 @default.
- W2844103009 cites W2019947342 @default.
- W2844103009 cites W2023739112 @default.
- W2844103009 cites W2027733533 @default.
- W2844103009 cites W2041071253 @default.
- W2844103009 cites W2043444804 @default.
- W2844103009 cites W2083043469 @default.
- W2844103009 cites W2113404906 @default.
- W2844103009 cites W2164774194 @default.
- W2844103009 cites W2172569937 @default.
- W2844103009 cites W2233221674 @default.
- W2844103009 cites W2291663409 @default.
- W2844103009 cites W2322965718 @default.
- W2844103009 cites W2336818263 @default.
- W2844103009 cites W2414031461 @default.
- W2844103009 cites W2471736554 @default.
- W2844103009 cites W2527824850 @default.
- W2844103009 cites W2529324783 @default.
- W2844103009 cites W2580718190 @default.
- W2844103009 cites W2587098848 @default.
- W2844103009 cites W2607490066 @default.
- W2844103009 cites W2732934299 @default.
- W2844103009 cites W2772059204 @default.
- W2844103009 cites W3130201740 @default.
- W2844103009 doi "https://doi.org/10.1167/iovs.18-24106" @default.
- W2844103009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29971444" @default.
- W2844103009 hasPublicationYear "2018" @default.
- W2844103009 type Work @default.
- W2844103009 sameAs 2844103009 @default.
- W2844103009 citedByCount "130" @default.
- W2844103009 countsByYear W28441030092018 @default.
- W2844103009 countsByYear W28441030092019 @default.
- W2844103009 countsByYear W28441030092020 @default.
- W2844103009 countsByYear W28441030092021 @default.
- W2844103009 countsByYear W28441030092022 @default.
- W2844103009 countsByYear W28441030092023 @default.
- W2844103009 crossrefType "journal-article" @default.
- W2844103009 hasAuthorship W2844103009A5007225897 @default.
- W2844103009 hasAuthorship W2844103009A5009681360 @default.
- W2844103009 hasAuthorship W2844103009A5013494845 @default.
- W2844103009 hasAuthorship W2844103009A5013612641 @default.
- W2844103009 hasAuthorship W2844103009A5039727719 @default.
- W2844103009 hasAuthorship W2844103009A5045723460 @default.
- W2844103009 hasAuthorship W2844103009A5053563726 @default.
- W2844103009 hasAuthorship W2844103009A5080764284 @default.
- W2844103009 hasBestOaLocation W28441030091 @default.
- W2844103009 hasConcept C118487528 @default.
- W2844103009 hasConcept C142724271 @default.
- W2844103009 hasConcept C169760540 @default.
- W2844103009 hasConcept C2776403814 @default.
- W2844103009 hasConcept C2776694393 @default.
- W2844103009 hasConcept C2777093970 @default.
- W2844103009 hasConcept C2778024200 @default.
- W2844103009 hasConcept C2778818243 @default.
- W2844103009 hasConcept C2779093074 @default.
- W2844103009 hasConcept C2780827179 @default.
- W2844103009 hasConcept C2781359195 @default.
- W2844103009 hasConcept C71924100 @default.
- W2844103009 hasConcept C86803240 @default.
- W2844103009 hasConceptScore W2844103009C118487528 @default.
- W2844103009 hasConceptScore W2844103009C142724271 @default.
- W2844103009 hasConceptScore W2844103009C169760540 @default.
- W2844103009 hasConceptScore W2844103009C2776403814 @default.
- W2844103009 hasConceptScore W2844103009C2776694393 @default.
- W2844103009 hasConceptScore W2844103009C2777093970 @default.
- W2844103009 hasConceptScore W2844103009C2778024200 @default.
- W2844103009 hasConceptScore W2844103009C2778818243 @default.
- W2844103009 hasConceptScore W2844103009C2779093074 @default.
- W2844103009 hasConceptScore W2844103009C2780827179 @default.
- W2844103009 hasConceptScore W2844103009C2781359195 @default.
- W2844103009 hasConceptScore W2844103009C71924100 @default.
- W2844103009 hasConceptScore W2844103009C86803240 @default.
- W2844103009 hasIssue "8" @default.
- W2844103009 hasLocation W28441030091 @default.
- W2844103009 hasLocation W28441030092 @default.
- W2844103009 hasOpenAccess W2844103009 @default.
- W2844103009 hasPrimaryLocation W28441030091 @default.
- W2844103009 hasRelatedWork W1983920824 @default.
- W2844103009 hasRelatedWork W2002437061 @default.