Matches in SemOpenAlex for { <https://semopenalex.org/work/W2845967943> ?p ?o ?g. }
- W2845967943 endingPage "2349" @default.
- W2845967943 startingPage "2331" @default.
- W2845967943 abstract "Where clouds occur, their water content is always positive definite, and may be near zero. In addition, it is common for errors in remote‐sensing observations of clouds and rainfall to be represented as a fraction of the measurement. Furthermore, there is nonlinearity in the relationships among cloud environment, cloud microphysical processes, and the amount and distribution of cloud and precipitation. For these reasons, data assimilation algorithms that rely on linearity and assumptions of Gaussian probability distributions may have difficulty in assimilating observations in cloudy regions, as well as producing an analysis that realistically represents the actual distribution of clouds and precipitation. A recently developed ensemble filter algorithm, the Gamma, Inverse‐Gamma, and Gaussian Ensemble Kalman Filter (GIGG‐EnKF), allows for fractional observation errors and positive‐definite quantities. As such, it has promise for producing more effective and accurate data assimilation and retrievals of clouds and precipitation. This study evaluates the effectiveness of the GIGG‐EnKF by using it to estimate the values of warm rain cloud microphysical parameters in a cloud model using observations of precipitation. GIGG‐EnKF estimates of cloud parameters and rainfall are compared with a Bayesian reference solution returned by a Markov chain Monte Carlo algorithm, and with a perturbed‐observations Ensemble transform Kalman filter (ETKF). The ETKF produces an ensemble with a substantial number of negative (non‐physical) precipitation rates and parameter values. In contrast, the GIGG‐EnKF precipitation analysis is positive definite, and is able to adapt to changes in the observation value (and observation uncertainty). Nonlinearity in the parameter–precipitation relationship is handled by implementing an iterative outer loop regression from the observation space to state space. The positive‐definite constraint and natural accommodation of fractional error, along with the iterative outer loop, produces an accurate reproduction of the Bayesian analysis of the precipitation rate and cloud microphysical parameter values." @default.
- W2845967943 created "2018-07-19" @default.
- W2845967943 creator A5061953305 @default.
- W2845967943 creator A5084604416 @default.
- W2845967943 date "2018-10-01" @default.
- W2845967943 modified "2023-10-12" @default.
- W2845967943 title "Nonlinear data assimilation for clouds and precipitation using a gamma inverse‐gamma ensemble filter" @default.
- W2845967943 cites W1512208174 @default.
- W2845967943 cites W1816972969 @default.
- W2845967943 cites W1968665738 @default.
- W2845967943 cites W1971635295 @default.
- W2845967943 cites W1979854948 @default.
- W2845967943 cites W1984453299 @default.
- W2845967943 cites W1986451116 @default.
- W2845967943 cites W1987308763 @default.
- W2845967943 cites W1988226092 @default.
- W2845967943 cites W1988258017 @default.
- W2845967943 cites W1988656709 @default.
- W2845967943 cites W1999808515 @default.
- W2845967943 cites W2000309039 @default.
- W2845967943 cites W2001250891 @default.
- W2845967943 cites W2012019949 @default.
- W2845967943 cites W2012908222 @default.
- W2845967943 cites W2015559976 @default.
- W2845967943 cites W2015769134 @default.
- W2845967943 cites W2024421564 @default.
- W2845967943 cites W2030293362 @default.
- W2845967943 cites W2030438034 @default.
- W2845967943 cites W2042992782 @default.
- W2845967943 cites W2043458064 @default.
- W2845967943 cites W2048526254 @default.
- W2845967943 cites W2062630842 @default.
- W2845967943 cites W2067658163 @default.
- W2845967943 cites W2069717158 @default.
- W2845967943 cites W2069991469 @default.
- W2845967943 cites W2074441553 @default.
- W2845967943 cites W2079075738 @default.
- W2845967943 cites W2081363219 @default.
- W2845967943 cites W2086305681 @default.
- W2845967943 cites W2086947509 @default.
- W2845967943 cites W2089595471 @default.
- W2845967943 cites W2107266410 @default.
- W2845967943 cites W2110798832 @default.
- W2845967943 cites W2110978023 @default.
- W2845967943 cites W2114515326 @default.
- W2845967943 cites W2125201859 @default.
- W2845967943 cites W2125235348 @default.
- W2845967943 cites W2133092748 @default.
- W2845967943 cites W2134631034 @default.
- W2845967943 cites W2135114661 @default.
- W2845967943 cites W2135754890 @default.
- W2845967943 cites W2136247179 @default.
- W2845967943 cites W2150951085 @default.
- W2845967943 cites W2165744180 @default.
- W2845967943 cites W2171689034 @default.
- W2845967943 cites W2173397950 @default.
- W2845967943 cites W2173752470 @default.
- W2845967943 cites W2174105915 @default.
- W2845967943 cites W2176150232 @default.
- W2845967943 cites W2179584279 @default.
- W2845967943 cites W2180946617 @default.
- W2845967943 cites W2187916618 @default.
- W2845967943 cites W2210161220 @default.
- W2845967943 cites W2237058496 @default.
- W2845967943 cites W2286314181 @default.
- W2845967943 cites W2548600963 @default.
- W2845967943 cites W2560048459 @default.
- W2845967943 cites W2769078202 @default.
- W2845967943 cites W2900304706 @default.
- W2845967943 cites W3172054987 @default.
- W2845967943 cites W4231204432 @default.
- W2845967943 cites W4238717354 @default.
- W2845967943 cites W4240733927 @default.
- W2845967943 doi "https://doi.org/10.1002/qj.3374" @default.
- W2845967943 hasPublicationYear "2018" @default.
- W2845967943 type Work @default.
- W2845967943 sameAs 2845967943 @default.
- W2845967943 citedByCount "13" @default.
- W2845967943 countsByYear W28459679432019 @default.
- W2845967943 countsByYear W28459679432020 @default.
- W2845967943 countsByYear W28459679432021 @default.
- W2845967943 countsByYear W28459679432022 @default.
- W2845967943 countsByYear W28459679432023 @default.
- W2845967943 crossrefType "journal-article" @default.
- W2845967943 hasAuthorship W2845967943A5061953305 @default.
- W2845967943 hasAuthorship W2845967943A5084604416 @default.
- W2845967943 hasBestOaLocation W28459679432 @default.
- W2845967943 hasConcept C105795698 @default.
- W2845967943 hasConcept C107054158 @default.
- W2845967943 hasConcept C111919701 @default.
- W2845967943 hasConcept C121332964 @default.
- W2845967943 hasConcept C149717495 @default.
- W2845967943 hasConcept C153294291 @default.
- W2845967943 hasConcept C157286648 @default.
- W2845967943 hasConcept C158622935 @default.
- W2845967943 hasConcept C205649164 @default.
- W2845967943 hasConcept C206833254 @default.
- W2845967943 hasConcept C24552861 @default.