Matches in SemOpenAlex for { <https://semopenalex.org/work/W2848020186> ?p ?o ?g. }
- W2848020186 endingPage "394" @default.
- W2848020186 startingPage "382" @default.
- W2848020186 abstract "The spectral reflectance is an intrinsic and discriminative characteristic of object materials and can be obtained by hyperspectral imaging. However, existing hyperspectral cameras are limited in low-spatial/temporal resolution while yet being complicated and expensive. In this paper, we present a nonnegative sparse representation based method to recover high-quality spectral reflectance from a single RGB image. Unlike previous methods, our approach learns multiple nonnegative sparse coding dictionaries from the training spectral dataset in terms of clustering results. Then, the spectral reflectance of the input RGB image is recovered based on nonnegative sparse representation, which also considers the spatial structured similarity and high correlation across spectra under the learned dictionaries. Furthermore, the illumination spectrum can be estimated with the recovered spectral reflectance under the known RGB camera spectral sensitivity. Experimental results show that the proposed method outperforms state-of-the-art spectral reflectance recovery methods in terms of both objective metrics and subjective visual quality. Besides, we show an application of our method to accurately relight scenes under the novel illumination." @default.
- W2848020186 created "2018-07-19" @default.
- W2848020186 creator A5021541475 @default.
- W2848020186 creator A5022334521 @default.
- W2848020186 creator A5033590885 @default.
- W2848020186 creator A5067800206 @default.
- W2848020186 date "2018-09-01" @default.
- W2848020186 modified "2023-10-16" @default.
- W2848020186 title "Spectral Reflectance Recovery From a Single RGB Image" @default.
- W2848020186 cites W1513984747 @default.
- W2848020186 cites W1534426948 @default.
- W2848020186 cites W1903337346 @default.
- W2848020186 cites W1966855663 @default.
- W2848020186 cites W1971319412 @default.
- W2848020186 cites W1984699170 @default.
- W2848020186 cites W1984864470 @default.
- W2848020186 cites W1987721959 @default.
- W2848020186 cites W2005876975 @default.
- W2848020186 cites W2012946078 @default.
- W2848020186 cites W2014403078 @default.
- W2848020186 cites W2021997546 @default.
- W2848020186 cites W2029285847 @default.
- W2848020186 cites W2064500837 @default.
- W2848020186 cites W2069300393 @default.
- W2848020186 cites W2070615500 @default.
- W2848020186 cites W2072445211 @default.
- W2848020186 cites W2073362905 @default.
- W2848020186 cites W2082590892 @default.
- W2848020186 cites W2092116045 @default.
- W2848020186 cites W2097073572 @default.
- W2848020186 cites W2102219056 @default.
- W2848020186 cites W2115257219 @default.
- W2848020186 cites W2115706991 @default.
- W2848020186 cites W2126021100 @default.
- W2848020186 cites W2135364872 @default.
- W2848020186 cites W2135619855 @default.
- W2848020186 cites W2152001765 @default.
- W2848020186 cites W2157343005 @default.
- W2848020186 cites W2163753106 @default.
- W2848020186 cites W2221899823 @default.
- W2848020186 cites W2327302159 @default.
- W2848020186 cites W2466285044 @default.
- W2848020186 cites W2466594406 @default.
- W2848020186 cites W2503619955 @default.
- W2848020186 cites W2520430674 @default.
- W2848020186 cites W2520844005 @default.
- W2848020186 cites W2523210664 @default.
- W2848020186 cites W2539233672 @default.
- W2848020186 cites W2623365049 @default.
- W2848020186 cites W2776639132 @default.
- W2848020186 cites W2963982292 @default.
- W2848020186 cites W8423413 @default.
- W2848020186 doi "https://doi.org/10.1109/tci.2018.2855445" @default.
- W2848020186 hasPublicationYear "2018" @default.
- W2848020186 type Work @default.
- W2848020186 sameAs 2848020186 @default.
- W2848020186 citedByCount "41" @default.
- W2848020186 countsByYear W28480201862019 @default.
- W2848020186 countsByYear W28480201862020 @default.
- W2848020186 countsByYear W28480201862021 @default.
- W2848020186 countsByYear W28480201862022 @default.
- W2848020186 countsByYear W28480201862023 @default.
- W2848020186 crossrefType "journal-article" @default.
- W2848020186 hasAuthorship W2848020186A5021541475 @default.
- W2848020186 hasAuthorship W2848020186A5022334521 @default.
- W2848020186 hasAuthorship W2848020186A5033590885 @default.
- W2848020186 hasAuthorship W2848020186A5067800206 @default.
- W2848020186 hasConcept C108597893 @default.
- W2848020186 hasConcept C120665830 @default.
- W2848020186 hasConcept C121332964 @default.
- W2848020186 hasConcept C124066611 @default.
- W2848020186 hasConcept C127313418 @default.
- W2848020186 hasConcept C153180895 @default.
- W2848020186 hasConcept C154945302 @default.
- W2848020186 hasConcept C159078339 @default.
- W2848020186 hasConcept C31972630 @default.
- W2848020186 hasConcept C3232514 @default.
- W2848020186 hasConcept C33923547 @default.
- W2848020186 hasConcept C41008148 @default.
- W2848020186 hasConcept C62649853 @default.
- W2848020186 hasConcept C82990744 @default.
- W2848020186 hasConcept C97931131 @default.
- W2848020186 hasConceptScore W2848020186C108597893 @default.
- W2848020186 hasConceptScore W2848020186C120665830 @default.
- W2848020186 hasConceptScore W2848020186C121332964 @default.
- W2848020186 hasConceptScore W2848020186C124066611 @default.
- W2848020186 hasConceptScore W2848020186C127313418 @default.
- W2848020186 hasConceptScore W2848020186C153180895 @default.
- W2848020186 hasConceptScore W2848020186C154945302 @default.
- W2848020186 hasConceptScore W2848020186C159078339 @default.
- W2848020186 hasConceptScore W2848020186C31972630 @default.
- W2848020186 hasConceptScore W2848020186C3232514 @default.
- W2848020186 hasConceptScore W2848020186C33923547 @default.
- W2848020186 hasConceptScore W2848020186C41008148 @default.
- W2848020186 hasConceptScore W2848020186C62649853 @default.
- W2848020186 hasConceptScore W2848020186C82990744 @default.
- W2848020186 hasConceptScore W2848020186C97931131 @default.
- W2848020186 hasFunder F4320321001 @default.