Matches in SemOpenAlex for { <https://semopenalex.org/work/W2848133549> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2848133549 abstract "The vast number of researchers has been focused on pattern recognition and computer vision fields in parallel with recent technological developments over the last two decades. Some of the topics in these areas are; face detection, face recognition and gender recognition. Mostly because, the studies conducted on these areas use native ways to collect biometric data without causing any inconvenience to the subject with their contactless and free flow nature. In this paper, a new system that provides gender information using facial images is presented. The system consists of two main stages; (i) face detection and (ii) gender recognition. In the first stage, the system focuses on the detection of frontal human faces in digital images. We used a linear classifier combined with Histogram of Oriented Gradients (HOG) feature for face detection. In the second stage, two different classifiers for gender recognition were trained. The first classifier is based on Support Vector Machines (SVM) and the second is based on Convolutional Neural Networks (CNN) which is also known as Deep Learning. We used Local Binary Pattern (LBP) and HOG as features for SVM classifier, and Radial Basis Function (RBP) as its kernel. For the CNN classifier, we used GoogleNet deep neural network architecture and the optimization was performed depending on the parameters. For training of both classifiers, Labeled Faces in the Wild (LFW), IMDB and WIKI data sets were used. In our experiments, we observed that the CNN based classifier surpasses the SVM based one in terms of accuracy." @default.
- W2848133549 created "2018-07-19" @default.
- W2848133549 creator A5053365607 @default.
- W2848133549 creator A5072258005 @default.
- W2848133549 date "2018-05-01" @default.
- W2848133549 modified "2023-09-23" @default.
- W2848133549 title "Gender recognition using innovative pattern recognition techniques" @default.
- W2848133549 cites W1595717062 @default.
- W2848133549 cites W1905153633 @default.
- W2848133549 cites W1971957654 @default.
- W2848133549 cites W1985878399 @default.
- W2848133549 cites W2097117768 @default.
- W2848133549 cites W2161969291 @default.
- W2848133549 cites W2202532860 @default.
- W2848133549 cites W396735907 @default.
- W2848133549 doi "https://doi.org/10.1109/siu.2018.8404306" @default.
- W2848133549 hasPublicationYear "2018" @default.
- W2848133549 type Work @default.
- W2848133549 sameAs 2848133549 @default.
- W2848133549 citedByCount "1" @default.
- W2848133549 countsByYear W28481335492022 @default.
- W2848133549 crossrefType "proceedings-article" @default.
- W2848133549 hasAuthorship W2848133549A5053365607 @default.
- W2848133549 hasAuthorship W2848133549A5072258005 @default.
- W2848133549 hasConcept C115961682 @default.
- W2848133549 hasConcept C119857082 @default.
- W2848133549 hasConcept C12267149 @default.
- W2848133549 hasConcept C153180895 @default.
- W2848133549 hasConcept C154945302 @default.
- W2848133549 hasConcept C17426736 @default.
- W2848133549 hasConcept C31510193 @default.
- W2848133549 hasConcept C41008148 @default.
- W2848133549 hasConcept C4641261 @default.
- W2848133549 hasConcept C52622490 @default.
- W2848133549 hasConcept C53533937 @default.
- W2848133549 hasConcept C81363708 @default.
- W2848133549 hasConcept C87335442 @default.
- W2848133549 hasConcept C88799230 @default.
- W2848133549 hasConcept C95623464 @default.
- W2848133549 hasConceptScore W2848133549C115961682 @default.
- W2848133549 hasConceptScore W2848133549C119857082 @default.
- W2848133549 hasConceptScore W2848133549C12267149 @default.
- W2848133549 hasConceptScore W2848133549C153180895 @default.
- W2848133549 hasConceptScore W2848133549C154945302 @default.
- W2848133549 hasConceptScore W2848133549C17426736 @default.
- W2848133549 hasConceptScore W2848133549C31510193 @default.
- W2848133549 hasConceptScore W2848133549C41008148 @default.
- W2848133549 hasConceptScore W2848133549C4641261 @default.
- W2848133549 hasConceptScore W2848133549C52622490 @default.
- W2848133549 hasConceptScore W2848133549C53533937 @default.
- W2848133549 hasConceptScore W2848133549C81363708 @default.
- W2848133549 hasConceptScore W2848133549C87335442 @default.
- W2848133549 hasConceptScore W2848133549C88799230 @default.
- W2848133549 hasConceptScore W2848133549C95623464 @default.
- W2848133549 hasLocation W28481335491 @default.
- W2848133549 hasOpenAccess W2848133549 @default.
- W2848133549 hasPrimaryLocation W28481335491 @default.
- W2848133549 hasRelatedWork W2051774273 @default.
- W2848133549 hasRelatedWork W2112328462 @default.
- W2848133549 hasRelatedWork W2122763103 @default.
- W2848133549 hasRelatedWork W2149494055 @default.
- W2848133549 hasRelatedWork W2483794834 @default.
- W2848133549 hasRelatedWork W2584335650 @default.
- W2848133549 hasRelatedWork W2756577788 @default.
- W2848133549 hasRelatedWork W2892944782 @default.
- W2848133549 hasRelatedWork W2898939352 @default.
- W2848133549 hasRelatedWork W2914194627 @default.
- W2848133549 hasRelatedWork W2920570637 @default.
- W2848133549 hasRelatedWork W2944778972 @default.
- W2848133549 hasRelatedWork W2982153533 @default.
- W2848133549 hasRelatedWork W3005271701 @default.
- W2848133549 hasRelatedWork W3015358946 @default.
- W2848133549 hasRelatedWork W3161961787 @default.
- W2848133549 hasRelatedWork W3162723769 @default.
- W2848133549 hasRelatedWork W3202997712 @default.
- W2848133549 hasRelatedWork W3094713373 @default.
- W2848133549 hasRelatedWork W3119021966 @default.
- W2848133549 isParatext "false" @default.
- W2848133549 isRetracted "false" @default.
- W2848133549 magId "2848133549" @default.
- W2848133549 workType "article" @default.