Matches in SemOpenAlex for { <https://semopenalex.org/work/W2849205719> ?p ?o ?g. }
- W2849205719 endingPage "658" @default.
- W2849205719 startingPage "649" @default.
- W2849205719 abstract "Unbalanced metabolic status in the weeks after calving predisposes dairy cows to metabolic and infectious diseases. Blood glucose, IGF-I, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) are used as indicators of the metabolic status of cows. This work aims to (1) evaluate the potential of milk mid-IR spectra to predict these blood components individually and (2) to evaluate the possibility of predicting the metabolic status of cows based on the clustering of these blood components. Blood samples were collected from 241 Holstein cows on six experimental farms, at days 14 and 35 after calving. Blood samples were analyzed by reference analysis and metabolic status was defined by k-means clustering (k=3) based on the four blood components. Milk mid-IR analyses were undertaken on different instruments and the spectra were harmonized into a common standardized format. Quantitative models predicting blood components were developed using partial least squares regression and discriminant models aiming to differentiate the metabolic status were developed with partial least squares discriminant analysis. Cross-validations were performed for both quantitative and discriminant models using four subsets randomly constituted. Blood glucose, IGF-I, NEFA and BHB were predicted with respective R 2 of calibration of 0.55, 0.69, 0.49 and 0.77, and R 2 of cross-validation of 0.44, 0.61, 0.39 and 0.70. Although these models were not able to provide precise quantitative values, they allow for screening of individual milk samples for high or low values. The clustering methodology led to the sharing out of the data set into three groups of cows representing healthy, moderately impacted and imbalanced metabolic status. The discriminant models allow to fairly classify the three groups, with a global percentage of correct classification up to 74%. When discriminating the cows with imbalanced metabolic status from cows with healthy and moderately impacted metabolic status, the models were able to distinguish imbalanced group with a global percentage of correct classification up to 92%. The performances were satisfactory considering the variables are not present in milk, and consequently predicted indirectly. This work showed the potential of milk mid-IR analysis to provide new metabolic status indicators based on individual blood components or a combination of these variables into a global status. Models have been developed within a standardized spectral format, and although robustness should preferably be improved with additional data integrating different geographic regions, diets and breeds, they constitute rapid, cost-effective and large-scale tools for management and breeding of dairy cows." @default.
- W2849205719 created "2018-07-19" @default.
- W2849205719 creator A5013892025 @default.
- W2849205719 creator A5020625264 @default.
- W2849205719 creator A5022219619 @default.
- W2849205719 creator A5029957666 @default.
- W2849205719 creator A5038133264 @default.
- W2849205719 creator A5045137302 @default.
- W2849205719 creator A5050521359 @default.
- W2849205719 creator A5052695473 @default.
- W2849205719 creator A5060879742 @default.
- W2849205719 creator A5065664811 @default.
- W2849205719 creator A5066085751 @default.
- W2849205719 creator A5072754453 @default.
- W2849205719 creator A5081821608 @default.
- W2849205719 creator A5089016003 @default.
- W2849205719 creator A5089257240 @default.
- W2849205719 date "2019-01-01" @default.
- W2849205719 modified "2023-10-14" @default.
- W2849205719 title "Potential of milk mid-IR spectra to predict metabolic status of cows through blood components and an innovative clustering approach" @default.
- W2849205719 cites W1593579216 @default.
- W2849205719 cites W1963729986 @default.
- W2849205719 cites W1964464800 @default.
- W2849205719 cites W1970714799 @default.
- W2849205719 cites W1987893244 @default.
- W2849205719 cites W2000549289 @default.
- W2849205719 cites W2008163846 @default.
- W2849205719 cites W2010029728 @default.
- W2849205719 cites W2013376826 @default.
- W2849205719 cites W2028429796 @default.
- W2849205719 cites W2032434235 @default.
- W2849205719 cites W2035970054 @default.
- W2849205719 cites W2038026694 @default.
- W2849205719 cites W2049865797 @default.
- W2849205719 cites W2050875594 @default.
- W2849205719 cites W2053559523 @default.
- W2849205719 cites W2054923638 @default.
- W2849205719 cites W2061072477 @default.
- W2849205719 cites W2068148882 @default.
- W2849205719 cites W2108439743 @default.
- W2849205719 cites W2108542410 @default.
- W2849205719 cites W2120562516 @default.
- W2849205719 cites W2125487311 @default.
- W2849205719 cites W2133856806 @default.
- W2849205719 cites W2159193468 @default.
- W2849205719 cites W2162652583 @default.
- W2849205719 cites W2170905369 @default.
- W2849205719 cites W2226386584 @default.
- W2849205719 cites W2303320765 @default.
- W2849205719 cites W2552961485 @default.
- W2849205719 cites W2619055678 @default.
- W2849205719 cites W2738536068 @default.
- W2849205719 doi "https://doi.org/10.1017/s1751731118001751" @default.
- W2849205719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29987991" @default.
- W2849205719 hasPublicationYear "2019" @default.
- W2849205719 type Work @default.
- W2849205719 sameAs 2849205719 @default.
- W2849205719 citedByCount "44" @default.
- W2849205719 countsByYear W28492057192019 @default.
- W2849205719 countsByYear W28492057192020 @default.
- W2849205719 countsByYear W28492057192021 @default.
- W2849205719 countsByYear W28492057192022 @default.
- W2849205719 countsByYear W28492057192023 @default.
- W2849205719 crossrefType "journal-article" @default.
- W2849205719 hasAuthorship W2849205719A5013892025 @default.
- W2849205719 hasAuthorship W2849205719A5020625264 @default.
- W2849205719 hasAuthorship W2849205719A5022219619 @default.
- W2849205719 hasAuthorship W2849205719A5029957666 @default.
- W2849205719 hasAuthorship W2849205719A5038133264 @default.
- W2849205719 hasAuthorship W2849205719A5045137302 @default.
- W2849205719 hasAuthorship W2849205719A5050521359 @default.
- W2849205719 hasAuthorship W2849205719A5052695473 @default.
- W2849205719 hasAuthorship W2849205719A5060879742 @default.
- W2849205719 hasAuthorship W2849205719A5065664811 @default.
- W2849205719 hasAuthorship W2849205719A5066085751 @default.
- W2849205719 hasAuthorship W2849205719A5072754453 @default.
- W2849205719 hasAuthorship W2849205719A5081821608 @default.
- W2849205719 hasAuthorship W2849205719A5089016003 @default.
- W2849205719 hasAuthorship W2849205719A5089257240 @default.
- W2849205719 hasBestOaLocation W28492057191 @default.
- W2849205719 hasConcept C105795698 @default.
- W2849205719 hasConcept C140793950 @default.
- W2849205719 hasConcept C150903083 @default.
- W2849205719 hasConcept C22354355 @default.
- W2849205719 hasConcept C22641795 @default.
- W2849205719 hasConcept C2776659692 @default.
- W2849205719 hasConcept C2776977481 @default.
- W2849205719 hasConcept C2779234561 @default.
- W2849205719 hasConcept C2779306644 @default.
- W2849205719 hasConcept C2779772378 @default.
- W2849205719 hasConcept C31903555 @default.
- W2849205719 hasConcept C33923547 @default.
- W2849205719 hasConcept C54355233 @default.
- W2849205719 hasConcept C69738355 @default.
- W2849205719 hasConcept C73555534 @default.
- W2849205719 hasConcept C86803240 @default.
- W2849205719 hasConceptScore W2849205719C105795698 @default.
- W2849205719 hasConceptScore W2849205719C140793950 @default.