Matches in SemOpenAlex for { <https://semopenalex.org/work/W28503569> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W28503569 abstract "Non-Learning Semantic Analysis for Context Discovery and Sentiment Estimation: Transportation Application by Himanshu Verma 〈Dr. Pushkin Kachroo〉, Examination Committee Chair Professor of Electrical and Computer Engineering University of Nevada, Las Vegas With enormous amount of linguistic data present on web, text analysis has become one of the major fields of interest today. This field includes sentiment analysis, information retrieval, text document classification, knowledge based modeling, content similarity measure, data clustering, words prediction/correction, decision making etc. Managing and processing such data has vital importance. The field being quite broad, our focus is mainly on transportation related social media(Twitter) data extraction, text categorization/classification which can be further sub-divided into concept discovery, word sense disambiguation and sentiment analysis to analyze performance of existing transportation system worldwide. Concept discovery is the method of extracting the actual concept/context in which the text is about. This also allows us to filter irrelevant data. Word sense disambiguation is to find the correct sense in which a word is being used in a sentence. It is the basic necessity for concept discovery. iii A lot of research has been done in this field with major improvements. However, when it comes to short texts, the field still seems in nascent stage. Moreover, most of the methods today require huge amount training corpus(database). Arranging such corpus is a cumbersome task and requires a lot of human effort. The other problem with the existing methods are that they require a set of defined concepts from which a concept is chosen and labeled to text. We will consider the case of finding a general context. In this work a novel approach has been proposed for word sense disambiguation which in turn allows us to find general context. For this purpose, I have used the existing knowledge based semantic dictionary called WordNet. This methodology helps in avoiding the use of huge corpus and works for general context recognition. Our focus is on short-texts(Tweets) but the concept is easily applicable to text documents as well. Sentiment measuring technique was applied on extracted data and the scores were mapped to google maps based on the location information present in the tweets. This clearly points out the locations where people are more frustrated with the existing transportation system and need immediate attention for improvements." @default.
- W28503569 created "2016-06-24" @default.
- W28503569 creator A5002554721 @default.
- W28503569 date "2014-01-01" @default.
- W28503569 modified "2023-09-23" @default.
- W28503569 title "Non-Learning Semantic Analysis for Context Discovery and Sentiment Estimation: Transportation Application" @default.
- W28503569 cites W1481946661 @default.
- W28503569 cites W1542064421 @default.
- W28503569 cites W1555161889 @default.
- W28503569 cites W1564518192 @default.
- W28503569 cites W1568869800 @default.
- W28503569 cites W1966415964 @default.
- W28503569 cites W2003240077 @default.
- W28503569 cites W2005129007 @default.
- W28503569 cites W2055616066 @default.
- W28503569 cites W2063386803 @default.
- W28503569 cites W2076632180 @default.
- W28503569 cites W2098368939 @default.
- W28503569 cites W2100935296 @default.
- W28503569 cites W2102381086 @default.
- W28503569 cites W2117753247 @default.
- W28503569 cites W2117805756 @default.
- W28503569 cites W2119821739 @default.
- W28503569 cites W2123489126 @default.
- W28503569 cites W2136480620 @default.
- W28503569 cites W2140354722 @default.
- W28503569 cites W2164547069 @default.
- W28503569 cites W2534712034 @default.
- W28503569 cites W30999966 @default.
- W28503569 doi "https://doi.org/10.34917/6456456" @default.
- W28503569 hasPublicationYear "2014" @default.
- W28503569 type Work @default.
- W28503569 sameAs 28503569 @default.
- W28503569 citedByCount "0" @default.
- W28503569 crossrefType "journal-article" @default.
- W28503569 hasAuthorship W28503569A5002554721 @default.
- W28503569 hasConcept C120567893 @default.
- W28503569 hasConcept C151730666 @default.
- W28503569 hasConcept C154945302 @default.
- W28503569 hasConcept C157659113 @default.
- W28503569 hasConcept C188338183 @default.
- W28503569 hasConcept C202444582 @default.
- W28503569 hasConcept C204321447 @default.
- W28503569 hasConcept C23123220 @default.
- W28503569 hasConcept C2522767166 @default.
- W28503569 hasConcept C2777530160 @default.
- W28503569 hasConcept C2779343474 @default.
- W28503569 hasConcept C33923547 @default.
- W28503569 hasConcept C34736171 @default.
- W28503569 hasConcept C41008148 @default.
- W28503569 hasConcept C66402592 @default.
- W28503569 hasConcept C86803240 @default.
- W28503569 hasConcept C9652623 @default.
- W28503569 hasConceptScore W28503569C120567893 @default.
- W28503569 hasConceptScore W28503569C151730666 @default.
- W28503569 hasConceptScore W28503569C154945302 @default.
- W28503569 hasConceptScore W28503569C157659113 @default.
- W28503569 hasConceptScore W28503569C188338183 @default.
- W28503569 hasConceptScore W28503569C202444582 @default.
- W28503569 hasConceptScore W28503569C204321447 @default.
- W28503569 hasConceptScore W28503569C23123220 @default.
- W28503569 hasConceptScore W28503569C2522767166 @default.
- W28503569 hasConceptScore W28503569C2777530160 @default.
- W28503569 hasConceptScore W28503569C2779343474 @default.
- W28503569 hasConceptScore W28503569C33923547 @default.
- W28503569 hasConceptScore W28503569C34736171 @default.
- W28503569 hasConceptScore W28503569C41008148 @default.
- W28503569 hasConceptScore W28503569C66402592 @default.
- W28503569 hasConceptScore W28503569C86803240 @default.
- W28503569 hasConceptScore W28503569C9652623 @default.
- W28503569 hasLocation W285035691 @default.
- W28503569 hasOpenAccess W28503569 @default.
- W28503569 hasPrimaryLocation W285035691 @default.
- W28503569 hasRelatedWork W152228199 @default.
- W28503569 hasRelatedWork W1583412584 @default.
- W28503569 hasRelatedWork W2099938389 @default.
- W28503569 hasRelatedWork W2638651934 @default.
- W28503569 hasRelatedWork W2726507998 @default.
- W28503569 hasRelatedWork W2741783387 @default.
- W28503569 hasRelatedWork W2750622713 @default.
- W28503569 hasRelatedWork W2782176844 @default.
- W28503569 hasRelatedWork W2801688415 @default.
- W28503569 hasRelatedWork W2852508999 @default.
- W28503569 hasRelatedWork W2884770197 @default.
- W28503569 hasRelatedWork W2944746205 @default.
- W28503569 hasRelatedWork W3005374336 @default.
- W28503569 hasRelatedWork W3006029042 @default.
- W28503569 hasRelatedWork W3009585207 @default.
- W28503569 hasRelatedWork W3040646727 @default.
- W28503569 hasRelatedWork W3096712456 @default.
- W28503569 hasRelatedWork W3138288379 @default.
- W28503569 hasRelatedWork W3183094660 @default.
- W28503569 hasRelatedWork W562187492 @default.
- W28503569 isParatext "false" @default.
- W28503569 isRetracted "false" @default.
- W28503569 magId "28503569" @default.
- W28503569 workType "article" @default.