Matches in SemOpenAlex for { <https://semopenalex.org/work/W2854287044> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2854287044 abstract "One of the challenges in model-based control of stochastic dynamical systems is that the state transition dynamics are involved, and it is not easy or efficient to make good-quality predictions of the states. Moreover, there are not many representational models for the majority of autonomous systems, as it is not easy to build a compact model that captures the entire dynamical subtleties and uncertainties. In this work, we present a hierarchical Bayesian linear regression model with local features to learn the dynamics of a micro-robotic system as well as two simpler examples, consisting of a stochastic mass-spring damper and a stochastic double inverted pendulum on a cart. The model is hierarchical since we assume non-stationary priors for the model parameters. These non-stationary priors make the model more flexible by imposing priors on the priors of the model. To solve the maximum likelihood (ML) problem for this hierarchical model, we use the variational expectation maximization (EM) algorithm, and enhance the procedure by introducing hidden target variables. The algorithm yields parsimonious model structures, and consistently provides fast and accurate predictions for all our examples involving large training and test sets. This demonstrates the effectiveness of the method in learning stochastic dynamics, which makes it suitable for future use in a paradigm, such as model-based reinforcement learning, to compute optimal control policies in real time." @default.
- W2854287044 created "2018-07-19" @default.
- W2854287044 creator A5001953637 @default.
- W2854287044 creator A5033387334 @default.
- W2854287044 creator A5071976030 @default.
- W2854287044 creator A5081274459 @default.
- W2854287044 date "2018-07-11" @default.
- W2854287044 modified "2023-09-27" @default.
- W2854287044 title "A Hierarchical Bayesian Linear Regression Model with Local Features for Stochastic Dynamics Approximation" @default.
- W2854287044 cites W2964008309 @default.
- W2854287044 cites W2964071008 @default.
- W2854287044 cites W2964079102 @default.
- W2854287044 cites W3099803807 @default.
- W2854287044 hasPublicationYear "2018" @default.
- W2854287044 type Work @default.
- W2854287044 sameAs 2854287044 @default.
- W2854287044 citedByCount "3" @default.
- W2854287044 countsByYear W28542870442018 @default.
- W2854287044 countsByYear W28542870442020 @default.
- W2854287044 crossrefType "posted-content" @default.
- W2854287044 hasAuthorship W2854287044A5001953637 @default.
- W2854287044 hasAuthorship W2854287044A5033387334 @default.
- W2854287044 hasAuthorship W2854287044A5071976030 @default.
- W2854287044 hasAuthorship W2854287044A5081274459 @default.
- W2854287044 hasConcept C107673813 @default.
- W2854287044 hasConcept C124101348 @default.
- W2854287044 hasConcept C126255220 @default.
- W2854287044 hasConcept C144986985 @default.
- W2854287044 hasConcept C154945302 @default.
- W2854287044 hasConcept C177769412 @default.
- W2854287044 hasConcept C2776330181 @default.
- W2854287044 hasConcept C33923547 @default.
- W2854287044 hasConcept C41008148 @default.
- W2854287044 hasConceptScore W2854287044C107673813 @default.
- W2854287044 hasConceptScore W2854287044C124101348 @default.
- W2854287044 hasConceptScore W2854287044C126255220 @default.
- W2854287044 hasConceptScore W2854287044C144986985 @default.
- W2854287044 hasConceptScore W2854287044C154945302 @default.
- W2854287044 hasConceptScore W2854287044C177769412 @default.
- W2854287044 hasConceptScore W2854287044C2776330181 @default.
- W2854287044 hasConceptScore W2854287044C33923547 @default.
- W2854287044 hasConceptScore W2854287044C41008148 @default.
- W2854287044 hasLocation W28542870441 @default.
- W2854287044 hasOpenAccess W2854287044 @default.
- W2854287044 hasPrimaryLocation W28542870441 @default.
- W2854287044 hasRelatedWork W1713680391 @default.
- W2854287044 hasRelatedWork W2014617596 @default.
- W2854287044 hasRelatedWork W2060063574 @default.
- W2854287044 hasRelatedWork W2154575165 @default.
- W2854287044 hasRelatedWork W2183391071 @default.
- W2854287044 hasRelatedWork W2298951388 @default.
- W2854287044 hasRelatedWork W2518648773 @default.
- W2854287044 hasRelatedWork W2796919988 @default.
- W2854287044 hasRelatedWork W2801459707 @default.
- W2854287044 hasRelatedWork W2805420338 @default.
- W2854287044 hasRelatedWork W2954992101 @default.
- W2854287044 hasRelatedWork W2991114314 @default.
- W2854287044 hasRelatedWork W3092768252 @default.
- W2854287044 hasRelatedWork W3103537044 @default.
- W2854287044 hasRelatedWork W3134411220 @default.
- W2854287044 hasRelatedWork W3160065077 @default.
- W2854287044 hasRelatedWork W3183359936 @default.
- W2854287044 hasRelatedWork W3183884758 @default.
- W2854287044 hasRelatedWork W3184738396 @default.
- W2854287044 hasRelatedWork W3214159065 @default.
- W2854287044 isParatext "false" @default.
- W2854287044 isRetracted "false" @default.
- W2854287044 magId "2854287044" @default.
- W2854287044 workType "article" @default.