Matches in SemOpenAlex for { <https://semopenalex.org/work/W2854626579> ?p ?o ?g. }
- W2854626579 endingPage "1171" @default.
- W2854626579 startingPage "1142" @default.
- W2854626579 abstract "Intricate manipulation of droplets in fluidic confinements may turn out to be critically important for achieving their controlled transverse distributions. Here, we study the migration characteristics of a suspended deformable droplet in a parallel plate channel under the combined influence of a constant temperature gradient in the transverse direction and an imposed pressure driven flow. An outstanding question concerning the resultant non-trivial dynamical features that we address here pertains to the nonlinearity that results as a consequence of the shape deformation, which does not permit us to analyse the combined transport as a mere linear superposition of the results for the thermocapillary and imposed flow driven droplet migration in an effort to obtain the final solution. For the analytical solution, an asymptotic approach is used, where we neglect any effect of inertia or thermal convection of the fluid in either of the phases. To obtain a numerical solution, we use the conservative level set method. We perform numerical simulations over a wide range of governing parameters and obtain the dependence of the transverse steady position of the droplet on different parameters. In order to address practical microfluidic set-ups, the influence of a bounding wall as well as the effect of thermal convection and finite shape deformation on the cross-stream migration of the droplet is investigated through numerical simulations. Increase in the thermal Marangoni stress shifts the steady-state transverse position of the droplet further away from the channel centreline, for any particular value of the capillary number (which signifies the ratio of the viscous force to the surface tension force). The confinement ratio, which is the ratio of the droplet radius to the channel height, plays an important role in predicting the transverse position of the droplet and thus has immense consequences for the design of droplet-based microfluidic devices with enhanced functionalities. A large confinement ratio drives the droplet towards the channel centre, whereas a smaller confinement ratio causes the droplet to move towards the wall. Moreover, for a fixed droplet radius and constant imposed temperature gradient, an increase in the channel height results in an increase in the time required for the droplet to reach the steady-state position. However, the final steady-state position of the droplet is independent of its initial position but at the same time dependent on the droplet phase thermal conductivity. A larger droplet thermal conductivity compared with the carrier phase results in a steady-state droplet position closer to the channel centreline. A higher fluid inertia, on the other hand, shifts the steady-state position towards the channel wall." @default.
- W2854626579 created "2018-07-19" @default.
- W2854626579 creator A5010328668 @default.
- W2854626579 creator A5030936947 @default.
- W2854626579 creator A5037979537 @default.
- W2854626579 date "2018-07-12" @default.
- W2854626579 modified "2023-09-26" @default.
- W2854626579 title "Effect of transverse temperature gradient on the migration of a deformable droplet in a Poiseuille flow" @default.
- W2854626579 cites W1608585368 @default.
- W2854626579 cites W1910197149 @default.
- W2854626579 cites W1965531799 @default.
- W2854626579 cites W1976563166 @default.
- W2854626579 cites W1984831096 @default.
- W2854626579 cites W1986339821 @default.
- W2854626579 cites W1991200172 @default.
- W2854626579 cites W1995486372 @default.
- W2854626579 cites W1996890065 @default.
- W2854626579 cites W1999530806 @default.
- W2854626579 cites W2001318505 @default.
- W2854626579 cites W2006197460 @default.
- W2854626579 cites W2006839985 @default.
- W2854626579 cites W2011764000 @default.
- W2854626579 cites W2015733475 @default.
- W2854626579 cites W2036171104 @default.
- W2854626579 cites W2043198459 @default.
- W2854626579 cites W2045021550 @default.
- W2854626579 cites W2045071200 @default.
- W2854626579 cites W2046745766 @default.
- W2854626579 cites W2053754866 @default.
- W2854626579 cites W2056144396 @default.
- W2854626579 cites W2059579153 @default.
- W2854626579 cites W2064598939 @default.
- W2854626579 cites W2076811139 @default.
- W2854626579 cites W2081315770 @default.
- W2854626579 cites W2087367209 @default.
- W2854626579 cites W2087409355 @default.
- W2854626579 cites W2088055341 @default.
- W2854626579 cites W2090002725 @default.
- W2854626579 cites W2092410951 @default.
- W2854626579 cites W2092855337 @default.
- W2854626579 cites W2094477189 @default.
- W2854626579 cites W2095217690 @default.
- W2854626579 cites W2100094388 @default.
- W2854626579 cites W2101976699 @default.
- W2854626579 cites W2112729030 @default.
- W2854626579 cites W2113127004 @default.
- W2854626579 cites W2114764875 @default.
- W2854626579 cites W2120863858 @default.
- W2854626579 cites W2125817748 @default.
- W2854626579 cites W2126832798 @default.
- W2854626579 cites W2132765877 @default.
- W2854626579 cites W2132855124 @default.
- W2854626579 cites W2161089088 @default.
- W2854626579 cites W2245437637 @default.
- W2854626579 cites W2260418145 @default.
- W2854626579 cites W2316666820 @default.
- W2854626579 cites W2580494962 @default.
- W2854626579 cites W3101088077 @default.
- W2854626579 cites W4210960748 @default.
- W2854626579 cites W4237205460 @default.
- W2854626579 doi "https://doi.org/10.1017/jfm.2018.493" @default.
- W2854626579 hasPublicationYear "2018" @default.
- W2854626579 type Work @default.
- W2854626579 sameAs 2854626579 @default.
- W2854626579 citedByCount "7" @default.
- W2854626579 countsByYear W28546265792019 @default.
- W2854626579 countsByYear W28546265792020 @default.
- W2854626579 countsByYear W28546265792021 @default.
- W2854626579 countsByYear W28546265792023 @default.
- W2854626579 crossrefType "journal-article" @default.
- W2854626579 hasAuthorship W2854626579A5010328668 @default.
- W2854626579 hasAuthorship W2854626579A5030936947 @default.
- W2854626579 hasAuthorship W2854626579A5037979537 @default.
- W2854626579 hasConcept C10899652 @default.
- W2854626579 hasConcept C110407247 @default.
- W2854626579 hasConcept C121332964 @default.
- W2854626579 hasConcept C127413603 @default.
- W2854626579 hasConcept C137109543 @default.
- W2854626579 hasConcept C153294291 @default.
- W2854626579 hasConcept C154954056 @default.
- W2854626579 hasConcept C158622935 @default.
- W2854626579 hasConcept C175336444 @default.
- W2854626579 hasConcept C192562407 @default.
- W2854626579 hasConcept C204366326 @default.
- W2854626579 hasConcept C204530211 @default.
- W2854626579 hasConcept C38349280 @default.
- W2854626579 hasConcept C57879066 @default.
- W2854626579 hasConcept C62520636 @default.
- W2854626579 hasConcept C63219958 @default.
- W2854626579 hasConcept C66938386 @default.
- W2854626579 hasConcept C74650414 @default.
- W2854626579 hasConcept C97355855 @default.
- W2854626579 hasConcept C98156149 @default.
- W2854626579 hasConceptScore W2854626579C10899652 @default.
- W2854626579 hasConceptScore W2854626579C110407247 @default.
- W2854626579 hasConceptScore W2854626579C121332964 @default.
- W2854626579 hasConceptScore W2854626579C127413603 @default.
- W2854626579 hasConceptScore W2854626579C137109543 @default.