Matches in SemOpenAlex for { <https://semopenalex.org/work/W2858745025> ?p ?o ?g. }
- W2858745025 endingPage "939" @default.
- W2858745025 startingPage "929" @default.
- W2858745025 abstract "We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification. Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current diagnostic gold standard of visual qualification by radiologists." @default.
- W2858745025 created "2018-07-19" @default.
- W2858745025 creator A5006872615 @default.
- W2858745025 creator A5017781416 @default.
- W2858745025 creator A5020847250 @default.
- W2858745025 creator A5023490330 @default.
- W2858745025 creator A5047345717 @default.
- W2858745025 creator A5047742848 @default.
- W2858745025 creator A5049799303 @default.
- W2858745025 creator A5063169405 @default.
- W2858745025 date "2018-07-06" @default.
- W2858745025 modified "2023-10-05" @default.
- W2858745025 title "A Decision-Support Tool for Renal Mass Classification" @default.
- W2858745025 cites W1510073064 @default.
- W2858745025 cites W1547859334 @default.
- W2858745025 cites W1585529040 @default.
- W2858745025 cites W1634066601 @default.
- W2858745025 cites W1678356000 @default.
- W2858745025 cites W1997945384 @default.
- W2858745025 cites W2004201455 @default.
- W2858745025 cites W2026333081 @default.
- W2858745025 cites W2033072307 @default.
- W2858745025 cites W2034227939 @default.
- W2858745025 cites W2035079251 @default.
- W2858745025 cites W2042607745 @default.
- W2858745025 cites W2044465660 @default.
- W2858745025 cites W2047377494 @default.
- W2858745025 cites W2051483504 @default.
- W2858745025 cites W2055098533 @default.
- W2858745025 cites W2074905128 @default.
- W2858745025 cites W2101115845 @default.
- W2858745025 cites W2105462031 @default.
- W2858745025 cites W2108694459 @default.
- W2858745025 cites W2111175405 @default.
- W2858745025 cites W2143426320 @default.
- W2858745025 cites W2150475393 @default.
- W2858745025 cites W2180456856 @default.
- W2858745025 cites W2209434878 @default.
- W2858745025 cites W2312449450 @default.
- W2858745025 cites W2317115490 @default.
- W2858745025 cites W2322112093 @default.
- W2858745025 cites W2488353765 @default.
- W2858745025 cites W2507026755 @default.
- W2858745025 cites W2513806838 @default.
- W2858745025 cites W2580547444 @default.
- W2858745025 cites W2592929672 @default.
- W2858745025 cites W262323182 @default.
- W2858745025 cites W2782525062 @default.
- W2858745025 cites W2891016561 @default.
- W2858745025 cites W2911964244 @default.
- W2858745025 cites W2963934397 @default.
- W2858745025 cites W4300999134 @default.
- W2858745025 cites W2594217783 @default.
- W2858745025 doi "https://doi.org/10.1007/s10278-018-0100-0" @default.
- W2858745025 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6261185" @default.
- W2858745025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29980960" @default.
- W2858745025 hasPublicationYear "2018" @default.
- W2858745025 type Work @default.
- W2858745025 sameAs 2858745025 @default.
- W2858745025 citedByCount "37" @default.
- W2858745025 countsByYear W28587450252019 @default.
- W2858745025 countsByYear W28587450252020 @default.
- W2858745025 countsByYear W28587450252021 @default.
- W2858745025 countsByYear W28587450252022 @default.
- W2858745025 countsByYear W28587450252023 @default.
- W2858745025 crossrefType "journal-article" @default.
- W2858745025 hasAuthorship W2858745025A5006872615 @default.
- W2858745025 hasAuthorship W2858745025A5017781416 @default.
- W2858745025 hasAuthorship W2858745025A5020847250 @default.
- W2858745025 hasAuthorship W2858745025A5023490330 @default.
- W2858745025 hasAuthorship W2858745025A5047345717 @default.
- W2858745025 hasAuthorship W2858745025A5047742848 @default.
- W2858745025 hasAuthorship W2858745025A5049799303 @default.
- W2858745025 hasAuthorship W2858745025A5063169405 @default.
- W2858745025 hasBestOaLocation W28587450252 @default.
- W2858745025 hasConcept C119857082 @default.
- W2858745025 hasConcept C124101348 @default.
- W2858745025 hasConcept C134018914 @default.
- W2858745025 hasConcept C153180895 @default.
- W2858745025 hasConcept C154945302 @default.
- W2858745025 hasConcept C169258074 @default.
- W2858745025 hasConcept C177877439 @default.
- W2858745025 hasConcept C2778559731 @default.
- W2858745025 hasConcept C2780091579 @default.
- W2858745025 hasConcept C2780227381 @default.
- W2858745025 hasConcept C2992994880 @default.
- W2858745025 hasConcept C31601959 @default.
- W2858745025 hasConcept C41008148 @default.
- W2858745025 hasConcept C46686674 @default.
- W2858745025 hasConcept C5655090 @default.
- W2858745025 hasConcept C70153297 @default.
- W2858745025 hasConcept C71924100 @default.
- W2858745025 hasConceptScore W2858745025C119857082 @default.
- W2858745025 hasConceptScore W2858745025C124101348 @default.
- W2858745025 hasConceptScore W2858745025C134018914 @default.
- W2858745025 hasConceptScore W2858745025C153180895 @default.
- W2858745025 hasConceptScore W2858745025C154945302 @default.
- W2858745025 hasConceptScore W2858745025C169258074 @default.