Matches in SemOpenAlex for { <https://semopenalex.org/work/W28597065> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W28597065 abstract "Mathematical models in imaging science attempt to understand and analyze the underlying quantitative structure of images. The most popular mathematical techniques tend to center around a variational principle. In general, variational methods are formulated by specifying an energy whose minimizers contain properties associated with an ideal image. Thus far, variational models have been successful in addressing the classical problems in imaging, namely the problems of denoising, deblurring, segmentation, and inpainting. Most work has concentrated around reconstructing homogeneous intensity regions with jump discontinuities (i.e. edges) -- one type of fine structure. More recent work has included models which incorporate tools for texture recovery. In practice, the most challenging components to recover from images are those which reside on fine-scales, namely the jumps and textures. This thesis focuses on the recovery and understanding of fine-scale information.In many image segmentation methods, the edge set is regularized by the Hausdorff measure (i.e. length). It is known that minimizers of models containing length regularizers have segments whose endpoints either terminate perpendicularly to the boundary of the domain, terminate at a triple junction where three segments connect, or terminate at a free endpoint where the segment does not connect to any other edges or the boundary of the domain. However, standard segmentation methods (those that are based on the level set method) are only able to capture edge structures which contain the first two types of segments. Part I generalizes the level set based image segmentation methods to be able to detect free endpoint structures. This results in the ability to capture a larger class of edge structures using the length regularizer while recovering homogeneous regions.Aside from edge recovery, cartoon-texture regularization applied to ill-posed imaging problems allows for the reconstruction of many small-scale (patterned) details. The cartoon component is typically modeled by functions of bounded variation and has been shown to be a successful descriptor of the large geometric structures in images. However, current texture models are not universal and may depend on the problem or the particular class of images. In general, texture is defined by its highly oscillatory nature and its well patterned structure. Exploiting each of these properties, two texture models are provided, one using weak functional spaces to promote oscillations and the other using matrix theory to define patterns.The first texture regularization is measured by duality with a space of functions which approximates W^(1, infinity), thereby encouraging oscillations. In order to provide a differentiable approximation to the L^infinity norm, a concentration of measures approach is taken. This model works well for reconstructing texture in highly degraded blurry images.The second texture model is defined by the nuclear norm applied to patches in the image, interpreting the texture patches to be low-rank. This provides a mathematical description for highly patterned texture as well as an easy to implement numerical method. This particular texture model has the advantage of separating noise from texture and has been shown to better reconstruct texture for other applications such as denoising, known deblurring, sparse reconstruction, and pattern regularization." @default.
- W28597065 created "2016-06-24" @default.
- W28597065 creator A5086926394 @default.
- W28597065 date "2013-01-01" @default.
- W28597065 modified "2023-09-27" @default.
- W28597065 title "Variational Models for Fine Structures" @default.
- W28597065 hasPublicationYear "2013" @default.
- W28597065 type Work @default.
- W28597065 sameAs 28597065 @default.
- W28597065 citedByCount "0" @default.
- W28597065 crossrefType "journal-article" @default.
- W28597065 hasAuthorship W28597065A5086926394 @default.
- W28597065 hasConcept C106430172 @default.
- W28597065 hasConcept C11413529 @default.
- W28597065 hasConcept C115961682 @default.
- W28597065 hasConcept C11727466 @default.
- W28597065 hasConcept C124504099 @default.
- W28597065 hasConcept C134306372 @default.
- W28597065 hasConcept C141898687 @default.
- W28597065 hasConcept C153008295 @default.
- W28597065 hasConcept C153180895 @default.
- W28597065 hasConcept C154945302 @default.
- W28597065 hasConcept C15627037 @default.
- W28597065 hasConcept C2777693668 @default.
- W28597065 hasConcept C33923547 @default.
- W28597065 hasConcept C36503486 @default.
- W28597065 hasConcept C41008148 @default.
- W28597065 hasConcept C62354387 @default.
- W28597065 hasConcept C89600930 @default.
- W28597065 hasConcept C9417928 @default.
- W28597065 hasConceptScore W28597065C106430172 @default.
- W28597065 hasConceptScore W28597065C11413529 @default.
- W28597065 hasConceptScore W28597065C115961682 @default.
- W28597065 hasConceptScore W28597065C11727466 @default.
- W28597065 hasConceptScore W28597065C124504099 @default.
- W28597065 hasConceptScore W28597065C134306372 @default.
- W28597065 hasConceptScore W28597065C141898687 @default.
- W28597065 hasConceptScore W28597065C153008295 @default.
- W28597065 hasConceptScore W28597065C153180895 @default.
- W28597065 hasConceptScore W28597065C154945302 @default.
- W28597065 hasConceptScore W28597065C15627037 @default.
- W28597065 hasConceptScore W28597065C2777693668 @default.
- W28597065 hasConceptScore W28597065C33923547 @default.
- W28597065 hasConceptScore W28597065C36503486 @default.
- W28597065 hasConceptScore W28597065C41008148 @default.
- W28597065 hasConceptScore W28597065C62354387 @default.
- W28597065 hasConceptScore W28597065C89600930 @default.
- W28597065 hasConceptScore W28597065C9417928 @default.
- W28597065 hasLocation W285970651 @default.
- W28597065 hasOpenAccess W28597065 @default.
- W28597065 hasPrimaryLocation W285970651 @default.
- W28597065 hasRelatedWork W1513900643 @default.
- W28597065 hasRelatedWork W1534008768 @default.
- W28597065 hasRelatedWork W1540484190 @default.
- W28597065 hasRelatedWork W1585667333 @default.
- W28597065 hasRelatedWork W2030942598 @default.
- W28597065 hasRelatedWork W2060548642 @default.
- W28597065 hasRelatedWork W2269139917 @default.
- W28597065 hasRelatedWork W2417298786 @default.
- W28597065 hasRelatedWork W2548837275 @default.
- W28597065 hasRelatedWork W2610158106 @default.
- W28597065 hasRelatedWork W2613273676 @default.
- W28597065 hasRelatedWork W2747997911 @default.
- W28597065 hasRelatedWork W2806050441 @default.
- W28597065 hasRelatedWork W2898467029 @default.
- W28597065 hasRelatedWork W2951579574 @default.
- W28597065 hasRelatedWork W2991339016 @default.
- W28597065 hasRelatedWork W3086099461 @default.
- W28597065 hasRelatedWork W3163262904 @default.
- W28597065 hasRelatedWork W2178183866 @default.
- W28597065 hasRelatedWork W2185662088 @default.
- W28597065 isParatext "false" @default.
- W28597065 isRetracted "false" @default.
- W28597065 magId "28597065" @default.
- W28597065 workType "article" @default.