Matches in SemOpenAlex for { <https://semopenalex.org/work/W2860398082> ?p ?o ?g. }
- W2860398082 endingPage "438" @default.
- W2860398082 startingPage "401" @default.
- W2860398082 abstract "We present new scaling expressions, including high-Reynolds-number ( $Re$ ) predictions, for all Reynolds stress components in the entire flow domain of turbulent channel and pipe flows. In Part 1 (She et al. , J. Fluid Mech. , vol. 827, 2017, pp. 322–356), based on the dilation symmetry of the mean Navier–Stokes equation a four-layer formula of the Reynolds shear stress length $ell _{12}$ – and hence also the entire mean velocity profile (MVP) – was obtained. Here, random dilations on the second-order balance equations for all the Reynolds stresses (shear stress $-overline{u^{prime }v^{prime }}$ , and normal stresses $overline{u^{prime }u^{prime }}$ , $overline{v^{prime }v^{prime }}$ , $overline{w^{prime }w^{prime }}$ ) are analysed layer by layer, and similar four-layer formulae of the corresponding stress length functions $ell _{11}$ , $ell _{22}$ , $ell _{33}$ (hence the three turbulence intensities) are obtained for turbulent channel and pipe flows. In particular, direct numerical simulation (DNS) data are shown to agree well with the four-layer formulae for $ell _{12}$ and $ell _{22}$ – which have the celebrated linear scalings in the logarithmic layer, i.e. $ell _{12}approx unicode[STIX]{x1D705}y$ and $ell _{22}approx unicode[STIX]{x1D705}_{22}y$ . However, data show an invariant peak location for $overline{w^{prime }w^{prime }}$ , which theoretically leads to an anomalous scaling in $ell _{33}$ in the log layer only, namely $ell _{33}propto y^{1-unicode[STIX]{x1D6FE}}$ with $unicode[STIX]{x1D6FE}approx 0.07$ . Furthermore, another mesolayer modification of $ell _{11}$ yields the experimentally observed location and magnitude of the outer peak of $overline{u^{prime }u^{prime }}$ . The resulting $-overline{u^{prime }v^{prime }}$ , $overline{u^{prime }u^{prime }}$ , $overline{v^{prime }v^{prime }}$ and $overline{w^{prime }w^{prime }}$ are all in good agreement with DNS and experimental data in the entire flow domain. Our additional results include: (1) the maximum turbulent production is located at $y^{+}approx 12$ ; (2) the location of peak value $-overline{u^{prime }v^{prime }}_{p}$ has a scaling transition from $5.7Re_{unicode[STIX]{x1D70F}}^{1/3}$ to $1.5Re_{unicode[STIX]{x1D70F}}^{1/2}$ at $Re_{unicode[STIX]{x1D70F}}approx 3000$ , with a $1+overline{u^{prime }v^{prime }}_{p}^{+}$ scaling transition from $8.5Re_{unicode[STIX]{x1D70F}}^{-2/3}$ to $3.0Re_{unicode[STIX]{x1D70F}}^{-1/2}$ ( $Re_{unicode[STIX]{x1D70F}}$ the friction Reynolds number); (3) the peak value $overline{w^{prime }w^{prime }}_{p}^{+}approx 0.84Re_{unicode[STIX]{x1D70F}}^{0.14}(1-48/Re_{unicode[STIX]{x1D70F}})$ ; (4) the outer peak of $overline{u^{prime }u^{prime }}$ emerges above $Re_{unicode[STIX]{x1D70F}}approx 10^{4}$ with its location scaling as $1.1Re_{unicode[STIX]{x1D70F}}^{1/2}$ and its magnitude scaling as $2.8Re_{unicode[STIX]{x1D70F}}^{0.09}$ ; (5) an alternative derivation of the log law of Townsend (1976, The Structure of Turbulent Shear Flow , Cambridge University Press), namely, $overline{u^{prime }u^{prime }}^{+}approx -1.25ln y+1.63$ and $overline{w^{prime }w^{prime }}^{+}approx -0.41ln y+1.00$ in the bulk." @default.
- W2860398082 created "2018-07-19" @default.
- W2860398082 creator A5031163364 @default.
- W2860398082 creator A5039451500 @default.
- W2860398082 creator A5082741306 @default.
- W2860398082 date "2018-07-05" @default.
- W2860398082 modified "2023-10-15" @default.
- W2860398082 title "Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses" @default.
- W2860398082 cites W1838562578 @default.
- W2860398082 cites W1969170514 @default.
- W2860398082 cites W1973351483 @default.
- W2860398082 cites W1974455159 @default.
- W2860398082 cites W1975456273 @default.
- W2860398082 cites W1978349358 @default.
- W2860398082 cites W1981691723 @default.
- W2860398082 cites W1981939637 @default.
- W2860398082 cites W1985459426 @default.
- W2860398082 cites W1992580424 @default.
- W2860398082 cites W1993056331 @default.
- W2860398082 cites W2000406404 @default.
- W2860398082 cites W2008998876 @default.
- W2860398082 cites W2012652902 @default.
- W2860398082 cites W2015979439 @default.
- W2860398082 cites W2024765986 @default.
- W2860398082 cites W2030144879 @default.
- W2860398082 cites W2030476366 @default.
- W2860398082 cites W2039762884 @default.
- W2860398082 cites W2050422730 @default.
- W2860398082 cites W2053013933 @default.
- W2860398082 cites W2062100823 @default.
- W2860398082 cites W2065880090 @default.
- W2860398082 cites W2065983067 @default.
- W2860398082 cites W2070753398 @default.
- W2860398082 cites W2074985244 @default.
- W2860398082 cites W2078174989 @default.
- W2860398082 cites W2079475896 @default.
- W2860398082 cites W2084353086 @default.
- W2860398082 cites W2084548161 @default.
- W2860398082 cites W2087910288 @default.
- W2860398082 cites W2090131196 @default.
- W2860398082 cites W2100776582 @default.
- W2860398082 cites W2105004227 @default.
- W2860398082 cites W2105732337 @default.
- W2860398082 cites W2109275518 @default.
- W2860398082 cites W2114512965 @default.
- W2860398082 cites W2115909740 @default.
- W2860398082 cites W2117554592 @default.
- W2860398082 cites W2118191351 @default.
- W2860398082 cites W2119083181 @default.
- W2860398082 cites W2119389904 @default.
- W2860398082 cites W2126577254 @default.
- W2860398082 cites W2131537960 @default.
- W2860398082 cites W2133625774 @default.
- W2860398082 cites W2138161720 @default.
- W2860398082 cites W2139247058 @default.
- W2860398082 cites W2143124873 @default.
- W2860398082 cites W2157169367 @default.
- W2860398082 cites W2158296088 @default.
- W2860398082 cites W2160092186 @default.
- W2860398082 cites W2168479071 @default.
- W2860398082 cites W2169466767 @default.
- W2860398082 cites W2171651455 @default.
- W2860398082 cites W2329539446 @default.
- W2860398082 cites W2415520258 @default.
- W2860398082 cites W2552141482 @default.
- W2860398082 cites W2579600753 @default.
- W2860398082 cites W2602676502 @default.
- W2860398082 cites W2610693032 @default.
- W2860398082 cites W2727875115 @default.
- W2860398082 cites W2749174689 @default.
- W2860398082 cites W2766795914 @default.
- W2860398082 cites W2802768264 @default.
- W2860398082 cites W2963179651 @default.
- W2860398082 cites W3098295520 @default.
- W2860398082 cites W3098425202 @default.
- W2860398082 cites W3099643229 @default.
- W2860398082 cites W3103988047 @default.
- W2860398082 cites W323536346 @default.
- W2860398082 cites W426824 @default.
- W2860398082 cites W602117930 @default.
- W2860398082 cites W98899841 @default.
- W2860398082 doi "https://doi.org/10.1017/jfm.2018.405" @default.
- W2860398082 hasPublicationYear "2018" @default.
- W2860398082 type Work @default.
- W2860398082 sameAs 2860398082 @default.
- W2860398082 citedByCount "34" @default.
- W2860398082 countsByYear W28603980822018 @default.
- W2860398082 countsByYear W28603980822019 @default.
- W2860398082 countsByYear W28603980822020 @default.
- W2860398082 countsByYear W28603980822021 @default.
- W2860398082 countsByYear W28603980822022 @default.
- W2860398082 countsByYear W28603980822023 @default.
- W2860398082 crossrefType "journal-article" @default.
- W2860398082 hasAuthorship W2860398082A5031163364 @default.
- W2860398082 hasAuthorship W2860398082A5039451500 @default.
- W2860398082 hasAuthorship W2860398082A5082741306 @default.
- W2860398082 hasBestOaLocation W28603980821 @default.
- W2860398082 hasConcept C114614502 @default.