Matches in SemOpenAlex for { <https://semopenalex.org/work/W2862951566> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2862951566 abstract "Nowadays people are becoming increasingly dependent on networks. Taking precautions before failure of networks is becoming more and more important. Compared with detection of faults, prediction of faults is more critical as it can efficiently avoid the damage made by network faults based on the fault prediction. So this paper focuses on network failure prediction. When predicting network faults, current methods mainly rely on structured data, like alarm data. Compared with structured data, log data are more abundant and recently implemented to solve failure prediction problems of network systems. In order to predict failure in the networks, it becomes essential to take advantage of log data. In this paper, we propose a novel method to predict failure in the network system. We build a CNN model to accomplish our work. Experimental results confirm the effectiveness of our method." @default.
- W2862951566 created "2018-07-19" @default.
- W2862951566 creator A5005426960 @default.
- W2862951566 creator A5047841433 @default.
- W2862951566 creator A5050982556 @default.
- W2862951566 creator A5062731814 @default.
- W2862951566 creator A5090493861 @default.
- W2862951566 date "2018-06-01" @default.
- W2862951566 modified "2023-10-10" @default.
- W2862951566 title "A CNN-based network failure prediction method with logs" @default.
- W2862951566 cites W1492039246 @default.
- W2862951566 cites W1832693441 @default.
- W2862951566 cites W1983569349 @default.
- W2862951566 cites W1987454953 @default.
- W2862951566 cites W2152671254 @default.
- W2862951566 cites W2168208712 @default.
- W2862951566 doi "https://doi.org/10.1109/ccdc.2018.8407833" @default.
- W2862951566 hasPublicationYear "2018" @default.
- W2862951566 type Work @default.
- W2862951566 sameAs 2862951566 @default.
- W2862951566 citedByCount "8" @default.
- W2862951566 countsByYear W28629515662019 @default.
- W2862951566 countsByYear W28629515662020 @default.
- W2862951566 countsByYear W28629515662021 @default.
- W2862951566 countsByYear W28629515662022 @default.
- W2862951566 crossrefType "proceedings-article" @default.
- W2862951566 hasAuthorship W2862951566A5005426960 @default.
- W2862951566 hasAuthorship W2862951566A5047841433 @default.
- W2862951566 hasAuthorship W2862951566A5050982556 @default.
- W2862951566 hasAuthorship W2862951566A5062731814 @default.
- W2862951566 hasAuthorship W2862951566A5090493861 @default.
- W2862951566 hasConcept C154945302 @default.
- W2862951566 hasConcept C41008148 @default.
- W2862951566 hasConceptScore W2862951566C154945302 @default.
- W2862951566 hasConceptScore W2862951566C41008148 @default.
- W2862951566 hasLocation W28629515661 @default.
- W2862951566 hasOpenAccess W2862951566 @default.
- W2862951566 hasPrimaryLocation W28629515661 @default.
- W2862951566 hasRelatedWork W1596801655 @default.
- W2862951566 hasRelatedWork W2049775471 @default.
- W2862951566 hasRelatedWork W2350741829 @default.
- W2862951566 hasRelatedWork W2358668433 @default.
- W2862951566 hasRelatedWork W2376932109 @default.
- W2862951566 hasRelatedWork W2382290278 @default.
- W2862951566 hasRelatedWork W2390279801 @default.
- W2862951566 hasRelatedWork W2748952813 @default.
- W2862951566 hasRelatedWork W2899084033 @default.
- W2862951566 hasRelatedWork W2530322880 @default.
- W2862951566 isParatext "false" @default.
- W2862951566 isRetracted "false" @default.
- W2862951566 magId "2862951566" @default.
- W2862951566 workType "article" @default.