Matches in SemOpenAlex for { <https://semopenalex.org/work/W2863840384> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2863840384 abstract "This article is devoted to the study of a higher-dimensional generalisation of de Rham epsilon lines. To a holonomic $D$-module $M$ on a smooth variety $X$ and a generic tuple of $1$-form $(nu_1,dots,nu_n)$, we associate a point of the $K$-theory space $K(X,Z)$. If $X$ is proper this $K$-theory class is related to the de Rham cohomology $RGamma_{dR}(X,M)$. The novel feature of our construction is that $Z$ is allowed to be of dimension $0$. Furthermore, we allow the tuple of $1$-forms to vary in families, and observe that this leads naturally to a crystal akin to the epsilon connection for curves. Our approach is based on combining a construction of Patel with a homotopy invariance property of algebraic $K$-theory with respect to $(mathbb{P}^1,infty)$. This homotopical viewpoint leads us naturally to the definition of an epsilon connection in higher dimensions. Along the way we prove the compatibility of Patel's epsilon factors with the graded lines defined by Deligne and Beilinson--Bloch--Esnault in the case of curves." @default.
- W2863840384 created "2018-07-19" @default.
- W2863840384 creator A5056438267 @default.
- W2863840384 date "2018-07-09" @default.
- W2863840384 modified "2023-09-27" @default.
- W2863840384 title "Higher de Rham epsilon factors" @default.
- W2863840384 cites W2008486699 @default.
- W2863840384 cites W2154354734 @default.
- W2863840384 cites W2911258957 @default.
- W2863840384 hasPublicationYear "2018" @default.
- W2863840384 type Work @default.
- W2863840384 sameAs 2863840384 @default.
- W2863840384 citedByCount "1" @default.
- W2863840384 countsByYear W28638403842018 @default.
- W2863840384 crossrefType "posted-content" @default.
- W2863840384 hasAuthorship W2863840384A5056438267 @default.
- W2863840384 hasConcept C118615104 @default.
- W2863840384 hasConcept C118930307 @default.
- W2863840384 hasConcept C121332964 @default.
- W2863840384 hasConcept C13355873 @default.
- W2863840384 hasConcept C134306372 @default.
- W2863840384 hasConcept C136119220 @default.
- W2863840384 hasConcept C165761256 @default.
- W2863840384 hasConcept C202444582 @default.
- W2863840384 hasConcept C2524010 @default.
- W2863840384 hasConcept C2777964439 @default.
- W2863840384 hasConcept C33923547 @default.
- W2863840384 hasConcept C5961521 @default.
- W2863840384 hasConcept C62520636 @default.
- W2863840384 hasConcept C64694042 @default.
- W2863840384 hasConcept C68365058 @default.
- W2863840384 hasConcept C72738302 @default.
- W2863840384 hasConcept C78606066 @default.
- W2863840384 hasConcept C9376300 @default.
- W2863840384 hasConceptScore W2863840384C118615104 @default.
- W2863840384 hasConceptScore W2863840384C118930307 @default.
- W2863840384 hasConceptScore W2863840384C121332964 @default.
- W2863840384 hasConceptScore W2863840384C13355873 @default.
- W2863840384 hasConceptScore W2863840384C134306372 @default.
- W2863840384 hasConceptScore W2863840384C136119220 @default.
- W2863840384 hasConceptScore W2863840384C165761256 @default.
- W2863840384 hasConceptScore W2863840384C202444582 @default.
- W2863840384 hasConceptScore W2863840384C2524010 @default.
- W2863840384 hasConceptScore W2863840384C2777964439 @default.
- W2863840384 hasConceptScore W2863840384C33923547 @default.
- W2863840384 hasConceptScore W2863840384C5961521 @default.
- W2863840384 hasConceptScore W2863840384C62520636 @default.
- W2863840384 hasConceptScore W2863840384C64694042 @default.
- W2863840384 hasConceptScore W2863840384C68365058 @default.
- W2863840384 hasConceptScore W2863840384C72738302 @default.
- W2863840384 hasConceptScore W2863840384C78606066 @default.
- W2863840384 hasConceptScore W2863840384C9376300 @default.
- W2863840384 hasLocation W28638403841 @default.
- W2863840384 hasOpenAccess W2863840384 @default.
- W2863840384 hasPrimaryLocation W28638403841 @default.
- W2863840384 hasRelatedWork W1618146534 @default.
- W2863840384 hasRelatedWork W2058670307 @default.
- W2863840384 hasRelatedWork W2171856425 @default.
- W2863840384 hasRelatedWork W2223035437 @default.
- W2863840384 hasRelatedWork W2522894754 @default.
- W2863840384 hasRelatedWork W2738740288 @default.
- W2863840384 hasRelatedWork W2798291480 @default.
- W2863840384 hasRelatedWork W2903185127 @default.
- W2863840384 hasRelatedWork W2903789826 @default.
- W2863840384 hasRelatedWork W2950657465 @default.
- W2863840384 hasRelatedWork W2954497235 @default.
- W2863840384 hasRelatedWork W3013039505 @default.
- W2863840384 hasRelatedWork W3022139862 @default.
- W2863840384 hasRelatedWork W3098498746 @default.
- W2863840384 hasRelatedWork W3099206398 @default.
- W2863840384 hasRelatedWork W3100193952 @default.
- W2863840384 hasRelatedWork W3104980546 @default.
- W2863840384 hasRelatedWork W3124506787 @default.
- W2863840384 hasRelatedWork W3200524155 @default.
- W2863840384 hasRelatedWork W3201098862 @default.
- W2863840384 isParatext "false" @default.
- W2863840384 isRetracted "false" @default.
- W2863840384 magId "2863840384" @default.
- W2863840384 workType "article" @default.