Matches in SemOpenAlex for { <https://semopenalex.org/work/W2864312902> ?p ?o ?g. }
- W2864312902 endingPage "114" @default.
- W2864312902 startingPage "101" @default.
- W2864312902 abstract "We analyze the performances and the optimization of 1H-{I} HMQC experiments using basic and interleaved DANTE schemes for the indirect detection of nuclei I = 1/2 or 1 exhibiting wide lines dominated by chemical shift anisotropy (CSA) or quadrupole interaction, respectively. These sequences are first described using average Hamiltonian theory. Then, we analyze using numerical simulations (i) the optimal lengths of the DANTE train and the individual pulses, (ii) the robustness of these experiments to offset, and (iii) the optimal choice of the defocusing and refocusing times for both 1H-{I} J- and D-HMQC sequences for 195Pt (I = 1/2) and 14N (I = 1) nuclei subject to large CSA and quadrupole interaction, respectively. These simulations are compared to 1H-{14N} D-HMQC experiments on γ-glycine and L-histidine.HCl at B0 = 18.8 T and MAS frequency of 62.5 kHz. The present study shows that (i) the optimal defocusing and refocusing times do not depend on the chosen DANTE scheme, (ii) the DANTE trains must be applied with the highest rf-field compatible with the probe specifications and the stability of the sample, (iii) the excitation bandwidth along the indirect dimension of HMQC sequence using DANTE trains is inversely proportional to their length, (iv) interleaved DANTE trains increase the excitation bandwidth of these sequences, and (v) dephasing under residual 1H–1H and 1H-I dipolar couplings, as well as 14N second-order quadrupole interaction, during the length of the DANTE scheme attenuate the transfer efficiency." @default.
- W2864312902 created "2018-07-19" @default.
- W2864312902 creator A5047914758 @default.
- W2864312902 creator A5071266145 @default.
- W2864312902 creator A5078018786 @default.
- W2864312902 creator A5080674896 @default.
- W2864312902 creator A5090423629 @default.
- W2864312902 creator A5090436918 @default.
- W2864312902 date "2018-09-01" @default.
- W2864312902 modified "2023-10-13" @default.
- W2864312902 title "Indirect detection of broad spectra in solid-state NMR using interleaved DANTE trains" @default.
- W2864312902 cites W1411250678 @default.
- W2864312902 cites W1481682663 @default.
- W2864312902 cites W1640093211 @default.
- W2864312902 cites W1963962861 @default.
- W2864312902 cites W1964205756 @default.
- W2864312902 cites W1967882841 @default.
- W2864312902 cites W1968812693 @default.
- W2864312902 cites W1975882186 @default.
- W2864312902 cites W1976809927 @default.
- W2864312902 cites W1977503203 @default.
- W2864312902 cites W1982018600 @default.
- W2864312902 cites W1983772179 @default.
- W2864312902 cites W1986082733 @default.
- W2864312902 cites W1990525105 @default.
- W2864312902 cites W1990653025 @default.
- W2864312902 cites W1991752789 @default.
- W2864312902 cites W1993878241 @default.
- W2864312902 cites W1993879606 @default.
- W2864312902 cites W2008983775 @default.
- W2864312902 cites W2014203218 @default.
- W2864312902 cites W2016819860 @default.
- W2864312902 cites W2018654932 @default.
- W2864312902 cites W2019891517 @default.
- W2864312902 cites W2020413465 @default.
- W2864312902 cites W2022208591 @default.
- W2864312902 cites W2023269018 @default.
- W2864312902 cites W2025487267 @default.
- W2864312902 cites W2029307225 @default.
- W2864312902 cites W2034653316 @default.
- W2864312902 cites W2041107104 @default.
- W2864312902 cites W2047539055 @default.
- W2864312902 cites W2048830154 @default.
- W2864312902 cites W2050933501 @default.
- W2864312902 cites W2051517642 @default.
- W2864312902 cites W2053051178 @default.
- W2864312902 cites W2057520291 @default.
- W2864312902 cites W2062031225 @default.
- W2864312902 cites W2063513991 @default.
- W2864312902 cites W2063587135 @default.
- W2864312902 cites W2064472669 @default.
- W2864312902 cites W2068787549 @default.
- W2864312902 cites W2070732378 @default.
- W2864312902 cites W2071907266 @default.
- W2864312902 cites W2074501770 @default.
- W2864312902 cites W2075616010 @default.
- W2864312902 cites W2075700874 @default.
- W2864312902 cites W2084546233 @default.
- W2864312902 cites W2086158937 @default.
- W2864312902 cites W2089150126 @default.
- W2864312902 cites W2089224375 @default.
- W2864312902 cites W2095839647 @default.
- W2864312902 cites W2113042962 @default.
- W2864312902 cites W2127131680 @default.
- W2864312902 cites W2141800763 @default.
- W2864312902 cites W2145840929 @default.
- W2864312902 cites W2146082280 @default.
- W2864312902 cites W2155660216 @default.
- W2864312902 cites W2162884629 @default.
- W2864312902 cites W2194484514 @default.
- W2864312902 cites W2269082606 @default.
- W2864312902 cites W2313083925 @default.
- W2864312902 cites W2315506856 @default.
- W2864312902 cites W2407639312 @default.
- W2864312902 cites W2417635685 @default.
- W2864312902 cites W2492152137 @default.
- W2864312902 cites W2494310460 @default.
- W2864312902 cites W2506034665 @default.
- W2864312902 cites W2514688200 @default.
- W2864312902 cites W2515226319 @default.
- W2864312902 cites W2521055464 @default.
- W2864312902 cites W2551809827 @default.
- W2864312902 cites W2560814703 @default.
- W2864312902 cites W2562207688 @default.
- W2864312902 cites W2572191671 @default.
- W2864312902 cites W2588550257 @default.
- W2864312902 cites W2600699638 @default.
- W2864312902 cites W2616456803 @default.
- W2864312902 cites W2747615680 @default.
- W2864312902 cites W2793098219 @default.
- W2864312902 cites W2793806340 @default.
- W2864312902 cites W2796689690 @default.
- W2864312902 cites W330737903 @default.
- W2864312902 cites W4235261249 @default.
- W2864312902 cites W4362225795 @default.
- W2864312902 cites W620080440 @default.
- W2864312902 cites W71836194 @default.
- W2864312902 doi "https://doi.org/10.1016/j.jmr.2018.07.005" @default.