Matches in SemOpenAlex for { <https://semopenalex.org/work/W2870502258> ?p ?o ?g. }
- W2870502258 abstract "We study the phase stability and martensitic transformation of orthorhombic and monoclinic polyethylene by means of density functional theory using the nonempirical consistent-exchange vdW-DF-cx functional [Phys. Rev. B 89, 035412 (2014)]. The results show that the orthorhombic phase is the most stable of the two. Owing to the occurrence of soft librational phonon modes, the monoclinic phase is predicted not to be stable at zero pressure and temperature, but becomes stable when subjected to compressive transverse deformations that pin the chains and prevent them from wiggling freely. This theoretical characterization, or prediction, is consistent with the fact that the monoclinic phase is only observed experimentally when the material is subjected to mechanical loading. Also, the estimated threshold energy for the combination of lattice deformation associated with the T1 and T2 transformation paths (between the orthorhombic and monoclinic phases) and chain shuffling is found to be sufficiently low for thermally activated back transformations to occur. Thus, our prediction is that the crystalline part can transform back from the monoclinic to the orthorhombic phase upon unloading and/or annealing, which is consistent with experimental observations. Finally, we observe how a combination of such phase transformations can lead to a fold-plane reorientation from {110} to {100} type in a single orthorhombic crystal." @default.
- W2870502258 created "2018-07-19" @default.
- W2870502258 creator A5013637168 @default.
- W2870502258 creator A5048351975 @default.
- W2870502258 creator A5063835505 @default.
- W2870502258 creator A5082170396 @default.
- W2870502258 creator A5084347199 @default.
- W2870502258 creator A5087476799 @default.
- W2870502258 date "2018-07-10" @default.
- W2870502258 modified "2023-10-14" @default.
- W2870502258 title "<i>Ab initio</i>investigation of monoclinic phase stability and martensitic transformation in crystalline polyethylene" @default.
- W2870502258 cites W1494343755 @default.
- W2870502258 cites W1529401294 @default.
- W2870502258 cites W1714343742 @default.
- W2870502258 cites W1965939307 @default.
- W2870502258 cites W1970623278 @default.
- W2870502258 cites W1973076712 @default.
- W2870502258 cites W1977090123 @default.
- W2870502258 cites W1981481878 @default.
- W2870502258 cites W1985412098 @default.
- W2870502258 cites W1985998727 @default.
- W2870502258 cites W1988320534 @default.
- W2870502258 cites W1992363034 @default.
- W2870502258 cites W1993023077 @default.
- W2870502258 cites W1994527222 @default.
- W2870502258 cites W1996080678 @default.
- W2870502258 cites W1997084402 @default.
- W2870502258 cites W1999632304 @default.
- W2870502258 cites W2001508813 @default.
- W2870502258 cites W2001817701 @default.
- W2870502258 cites W2003193361 @default.
- W2870502258 cites W2003214032 @default.
- W2870502258 cites W2003710570 @default.
- W2870502258 cites W2009391747 @default.
- W2870502258 cites W2009665176 @default.
- W2870502258 cites W2010806444 @default.
- W2870502258 cites W2013113055 @default.
- W2870502258 cites W2013356562 @default.
- W2870502258 cites W2013630347 @default.
- W2870502258 cites W2015762944 @default.
- W2870502258 cites W2021409511 @default.
- W2870502258 cites W2026936385 @default.
- W2870502258 cites W2027186672 @default.
- W2870502258 cites W2027895936 @default.
- W2870502258 cites W2028056984 @default.
- W2870502258 cites W2030892355 @default.
- W2870502258 cites W2031528319 @default.
- W2870502258 cites W2036113194 @default.
- W2870502258 cites W2042498037 @default.
- W2870502258 cites W2043535587 @default.
- W2870502258 cites W2045495017 @default.
- W2870502258 cites W2047141779 @default.
- W2870502258 cites W2047631588 @default.
- W2870502258 cites W2052444148 @default.
- W2870502258 cites W2052720357 @default.
- W2870502258 cites W2054139194 @default.
- W2870502258 cites W2056773155 @default.
- W2870502258 cites W2063085885 @default.
- W2870502258 cites W2065251521 @default.
- W2870502258 cites W2066422974 @default.
- W2870502258 cites W2074094119 @default.
- W2870502258 cites W2086083470 @default.
- W2870502258 cites W2086218282 @default.
- W2870502258 cites W2086372848 @default.
- W2870502258 cites W2086664306 @default.
- W2870502258 cites W2086875810 @default.
- W2870502258 cites W2086957099 @default.
- W2870502258 cites W2087585288 @default.
- W2870502258 cites W2091821692 @default.
- W2870502258 cites W2093494652 @default.
- W2870502258 cites W2095214818 @default.
- W2870502258 cites W2104984343 @default.
- W2870502258 cites W2111585073 @default.
- W2870502258 cites W2113076432 @default.
- W2870502258 cites W2113824503 @default.
- W2870502258 cites W2118100648 @default.
- W2870502258 cites W2120145199 @default.
- W2870502258 cites W2140012415 @default.
- W2870502258 cites W2159795178 @default.
- W2870502258 cites W2166117776 @default.
- W2870502258 cites W2167434234 @default.
- W2870502258 cites W2271095341 @default.
- W2870502258 cites W2286945581 @default.
- W2870502258 cites W2324042291 @default.
- W2870502258 cites W2325663311 @default.
- W2870502258 cites W2367870224 @default.
- W2870502258 cites W2416063913 @default.
- W2870502258 cites W2622581848 @default.
- W2870502258 cites W2950873748 @default.
- W2870502258 cites W3099461197 @default.
- W2870502258 cites W3101095095 @default.
- W2870502258 cites W3101438994 @default.
- W2870502258 cites W3102908335 @default.
- W2870502258 cites W4235711955 @default.
- W2870502258 cites W4240697528 @default.
- W2870502258 doi "https://doi.org/10.1103/physrevmaterials.2.075602" @default.
- W2870502258 hasPublicationYear "2018" @default.
- W2870502258 type Work @default.
- W2870502258 sameAs 2870502258 @default.
- W2870502258 citedByCount "13" @default.