Matches in SemOpenAlex for { <https://semopenalex.org/work/W2875193073> ?p ?o ?g. }
- W2875193073 endingPage "1788" @default.
- W2875193073 startingPage "1779" @default.
- W2875193073 abstract "Essentials•Inhibitor formation remains a challenging complication of hemophilia A care.•The Bethesda assay is the primary method used for determining bleeding risk and management.•Antibodies that block factor VIII binding to von Willebrand factor can increase FVIII clearance.•Antibodies that increase clearance contribute to antibody pathogenicity.AcknowledgementsThis research was supported by Atlanta Pediatric Scholars Program K12 HD072245 (G. Batsuli), the 2016 HTRS/Novo Nordisk Mentored Research Award in Hemophilia and Rare Bleeding Disorders from the Hemostasis and Thrombosis Research Society (HTRS) supported by an educational grant from Novo Nordisk Inc. (G. Batsuli), NIH grant U54 HL112309 (P. Lollar and S. L. Meeks), and Hemophilia of Georgia, Inc. (P. Lollar and S. L. Meeks). We thank J. Voorberg for providing the human‐derived anti‐FVIII C1 antibody KM33 and D. Wagner for the FVIII−/−/VWF−/− mice.Atlanta Pediatric Scholars ProgramK12 HD072245Hemostasis and Thrombosis Research SocietyNIHU54 HL112309Hemophilia of Georgia, Inc.Summary: BackgroundThe development of neutralizing anti‐factor VIII (FVIII) antibodies remains a challenging complication of modern hemophilia A care. In vitro assays are the primary method used for quantifying inhibitor titers, predicting bleeding risk, and determining bleeding management. However, other mechanisms of inhibition are not accounted for in these assays, which may result in discrepancies between the inhibitor titer and clinical bleeding symptoms.ObjectivesTo evaluate FVIII clearance in vivo as a potential mechanism for antibody pathogenicity and to determine whether increased FVIII dosing regimens correct the associated bleeding phenotype.MethodsFVIII−/− or FVIII−/−/von Willebrand factor (VWF)−/− mice were infused with anti‐FVIII mAbs directed against the FVIII C1, C2 or A2 domains, followed by infusion of FVIII. Blood loss via the tail snip bleeding model, FVIII activity and FVIII antigen levels were subsequently measured.ResultsPathogenic anti‐C1 mAbs that compete with VWF for FVIII binding increased the clearance of FVIII–mAb complexes in FVIII−/− mice but not in FVIII−/−/VWF−/− mice. Additionally, pathogenic anti‐C2 mAbs that inhibit FVIII binding to VWF increased FVIII clearance in FVIII−/− mice. Anti‐C1, anti‐C2 and anti‐A2 mAbs that do not inhibit VWF binding did not accelerate FVIII clearance. Infusion of increased doses of FVIII in the presence of anti‐C1 mAbs partially corrected blood loss in FVIII−/− mice.ConclusionsA subset of antibodies that inhibit VWF binding to FVIII increase the clearance of FVIII–mAb complexes, which contributes to antibody pathogenicity. This may explain differences in the bleeding phenotype observed despite factor replacement in some patients with hemophilia A and low‐titer inhibitors. Essentials•Inhibitor formation remains a challenging complication of hemophilia A care.•The Bethesda assay is the primary method used for determining bleeding risk and management.•Antibodies that block factor VIII binding to von Willebrand factor can increase FVIII clearance.•Antibodies that increase clearance contribute to antibody pathogenicity.AcknowledgementsThis research was supported by Atlanta Pediatric Scholars Program K12 HD072245 (G. Batsuli), the 2016 HTRS/Novo Nordisk Mentored Research Award in Hemophilia and Rare Bleeding Disorders from the Hemostasis and Thrombosis Research Society (HTRS) supported by an educational grant from Novo Nordisk Inc. (G. Batsuli), NIH grant U54 HL112309 (P. Lollar and S. L. Meeks), and Hemophilia of Georgia, Inc. (P. Lollar and S. L. Meeks). We thank J. Voorberg for providing the human‐derived anti‐FVIII C1 antibody KM33 and D. Wagner for the FVIII−/−/VWF−/− mice.Atlanta Pediatric Scholars ProgramK12 HD072245Hemostasis and Thrombosis Research SocietyNIHU54 HL112309Hemophilia of Georgia, Inc. •Inhibitor formation remains a challenging complication of hemophilia A care.•The Bethesda assay is the primary method used for determining bleeding risk and management.•Antibodies that block factor VIII binding to von Willebrand factor can increase FVIII clearance.•Antibodies that increase clearance contribute to antibody pathogenicity. This research was supported by Atlanta Pediatric Scholars Program K12 HD072245 (G. Batsuli), the 2016 HTRS/Novo Nordisk Mentored Research Award in Hemophilia and Rare Bleeding Disorders from the Hemostasis and Thrombosis Research Society (HTRS) supported by an educational grant from Novo Nordisk Inc. (G. Batsuli), NIH grant U54 HL112309 (P. Lollar and S. L. Meeks), and Hemophilia of Georgia, Inc. (P. Lollar and S. L. Meeks). We thank J. Voorberg for providing the human‐derived anti‐FVIII C1 antibody KM33 and D. Wagner for the FVIII−/−/VWF−/− mice.Atlanta Pediatric Scholars ProgramK12 HD072245Hemostasis and Thrombosis Research SocietyNIHU54 HL112309Hemophilia of Georgia, Inc. The development of neutralizing anti‐factor VIII (FVIII) antibodies remains a challenging complication of modern hemophilia A care. In vitro assays are the primary method used for quantifying inhibitor titers, predicting bleeding risk, and determining bleeding management. However, other mechanisms of inhibition are not accounted for in these assays, which may result in discrepancies between the inhibitor titer and clinical bleeding symptoms. To evaluate FVIII clearance in vivo as a potential mechanism for antibody pathogenicity and to determine whether increased FVIII dosing regimens correct the associated bleeding phenotype. FVIII−/− or FVIII−/−/von Willebrand factor (VWF)−/− mice were infused with anti‐FVIII mAbs directed against the FVIII C1, C2 or A2 domains, followed by infusion of FVIII. Blood loss via the tail snip bleeding model, FVIII activity and FVIII antigen levels were subsequently measured. Pathogenic anti‐C1 mAbs that compete with VWF for FVIII binding increased the clearance of FVIII–mAb complexes in FVIII−/− mice but not in FVIII−/−/VWF−/− mice. Additionally, pathogenic anti‐C2 mAbs that inhibit FVIII binding to VWF increased FVIII clearance in FVIII−/− mice. Anti‐C1, anti‐C2 and anti‐A2 mAbs that do not inhibit VWF binding did not accelerate FVIII clearance. Infusion of increased doses of FVIII in the presence of anti‐C1 mAbs partially corrected blood loss in FVIII−/− mice. A subset of antibodies that inhibit VWF binding to FVIII increase the clearance of FVIII–mAb complexes, which contributes to antibody pathogenicity. This may explain differences in the bleeding phenotype observed despite factor replacement in some patients with hemophilia A and low‐titer inhibitors." @default.
- W2875193073 created "2018-07-19" @default.
- W2875193073 creator A5000105274 @default.
- W2875193073 creator A5013298828 @default.
- W2875193073 creator A5033936523 @default.
- W2875193073 creator A5038275899 @default.
- W2875193073 creator A5042202715 @default.
- W2875193073 creator A5042987026 @default.
- W2875193073 creator A5053387578 @default.
- W2875193073 creator A5060840696 @default.
- W2875193073 creator A5070270521 @default.
- W2875193073 date "2018-09-01" @default.
- W2875193073 modified "2023-10-06" @default.
- W2875193073 title "Anti‐C1 domain antibodies that accelerate factor VIII clearance contribute to antibody pathogenicity in a murine hemophilia A model" @default.
- W2875193073 cites W1481832402 @default.
- W2875193073 cites W1537488882 @default.
- W2875193073 cites W1564299213 @default.
- W2875193073 cites W1967890046 @default.
- W2875193073 cites W1977004360 @default.
- W2875193073 cites W1985173855 @default.
- W2875193073 cites W2003195332 @default.
- W2875193073 cites W2008996942 @default.
- W2875193073 cites W2016623612 @default.
- W2875193073 cites W2028409339 @default.
- W2875193073 cites W2032615851 @default.
- W2875193073 cites W2037201482 @default.
- W2875193073 cites W2059388048 @default.
- W2875193073 cites W2069478278 @default.
- W2875193073 cites W2071801576 @default.
- W2875193073 cites W2074891543 @default.
- W2875193073 cites W2077290326 @default.
- W2875193073 cites W2080548155 @default.
- W2875193073 cites W2089276240 @default.
- W2875193073 cites W2093800786 @default.
- W2875193073 cites W2115140021 @default.
- W2875193073 cites W2131289400 @default.
- W2875193073 cites W2145213708 @default.
- W2875193073 cites W2148093289 @default.
- W2875193073 cites W2149564822 @default.
- W2875193073 cites W2155433807 @default.
- W2875193073 cites W2162172694 @default.
- W2875193073 cites W2181469541 @default.
- W2875193073 cites W2225119179 @default.
- W2875193073 cites W2319544754 @default.
- W2875193073 cites W2337788402 @default.
- W2875193073 cites W2463594392 @default.
- W2875193073 cites W2494708045 @default.
- W2875193073 cites W2562603171 @default.
- W2875193073 cites W2728703639 @default.
- W2875193073 cites W2744390672 @default.
- W2875193073 doi "https://doi.org/10.1111/jth.14233" @default.
- W2875193073 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6123829" @default.
- W2875193073 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29981270" @default.
- W2875193073 hasPublicationYear "2018" @default.
- W2875193073 type Work @default.
- W2875193073 sameAs 2875193073 @default.
- W2875193073 citedByCount "11" @default.
- W2875193073 countsByYear W28751930732020 @default.
- W2875193073 countsByYear W28751930732021 @default.
- W2875193073 countsByYear W28751930732022 @default.
- W2875193073 countsByYear W28751930732023 @default.
- W2875193073 crossrefType "journal-article" @default.
- W2875193073 hasAuthorship W2875193073A5000105274 @default.
- W2875193073 hasAuthorship W2875193073A5013298828 @default.
- W2875193073 hasAuthorship W2875193073A5033936523 @default.
- W2875193073 hasAuthorship W2875193073A5038275899 @default.
- W2875193073 hasAuthorship W2875193073A5042202715 @default.
- W2875193073 hasAuthorship W2875193073A5042987026 @default.
- W2875193073 hasAuthorship W2875193073A5053387578 @default.
- W2875193073 hasAuthorship W2875193073A5060840696 @default.
- W2875193073 hasAuthorship W2875193073A5070270521 @default.
- W2875193073 hasBestOaLocation W28751930731 @default.
- W2875193073 hasConcept C126322002 @default.
- W2875193073 hasConcept C150903083 @default.
- W2875193073 hasConcept C159654299 @default.
- W2875193073 hasConcept C203014093 @default.
- W2875193073 hasConcept C207001950 @default.
- W2875193073 hasConcept C22889606 @default.
- W2875193073 hasConcept C2778589496 @default.
- W2875193073 hasConcept C2778780528 @default.
- W2875193073 hasConcept C2779394231 @default.
- W2875193073 hasConcept C2780868729 @default.
- W2875193073 hasConcept C2781221834 @default.
- W2875193073 hasConcept C32611913 @default.
- W2875193073 hasConcept C71924100 @default.
- W2875193073 hasConcept C86803240 @default.
- W2875193073 hasConcept C89560881 @default.
- W2875193073 hasConceptScore W2875193073C126322002 @default.
- W2875193073 hasConceptScore W2875193073C150903083 @default.
- W2875193073 hasConceptScore W2875193073C159654299 @default.
- W2875193073 hasConceptScore W2875193073C203014093 @default.
- W2875193073 hasConceptScore W2875193073C207001950 @default.
- W2875193073 hasConceptScore W2875193073C22889606 @default.
- W2875193073 hasConceptScore W2875193073C2778589496 @default.
- W2875193073 hasConceptScore W2875193073C2778780528 @default.
- W2875193073 hasConceptScore W2875193073C2779394231 @default.
- W2875193073 hasConceptScore W2875193073C2780868729 @default.
- W2875193073 hasConceptScore W2875193073C2781221834 @default.