Matches in SemOpenAlex for { <https://semopenalex.org/work/W2875362110> ?p ?o ?g. }
- W2875362110 abstract "Abstract The present study aims to investigate uncertainty quantification followed by reliability analysis of structure with homogeneous non-normal random fields. In stochastic finite element formulation, these continuous fields are discretized by different methods (e.g. Karhunen-Loeve Expansion) which transformed it into a set of random variables. However, this discretization often leads to large number of random variables, especially for multiple random fields. With this in view, two different meta-model based approaches are presented in this study using high dimensional model representation (HDMR) for efficient stochastic computation. First, an adaptive multiple finite difference HDMR (AMFD-HDMR) is proposed that decomposes the original performance function into summands of smaller dimensions. These subfunctions are modeled by polynomial chaos expansion (PCE) using moving least square technique which utilizes the benefits of orthogonality of the basis functions and provides adaptive interpolation between the support points. These support points are generated in a sparse grid framework based on the hierarchial tensor products of the sub-grids and the appropriate statistical properties. An iterative scheme is developed with the aim to create new support points in the desired locations such as most probable failure point and/or maxima/minima. Later, a dimension adaptive multiple finite difference HDMR (dAMFD-HDMR) is proposed utilizing sensitivity analysis to further improve the efficiency and accuracy. In the second proposal, an intermittent HDMR formulation is suggested based on the individual and mutual contributions of the significant dimensions. Once the meta-model is built, Monte Carlo simulation is performed over it, thus bypassing the time exhaustive computation of the original performance function. Numerical studies are carried out using composite plate to prove the merits of the proposed algorithms compared to other methods available in the literature." @default.
- W2875362110 created "2018-07-19" @default.
- W2875362110 creator A5047401860 @default.
- W2875362110 creator A5071300168 @default.
- W2875362110 date "2018-11-01" @default.
- W2875362110 modified "2023-09-24" @default.
- W2875362110 title "Dimension adaptive finite difference decomposition using multiple sparse grids for stochastic computation" @default.
- W2875362110 cites W1538934584 @default.
- W2875362110 cites W1639564182 @default.
- W2875362110 cites W1972955129 @default.
- W2875362110 cites W1988026421 @default.
- W2875362110 cites W1991565519 @default.
- W2875362110 cites W1992371804 @default.
- W2875362110 cites W1994069683 @default.
- W2875362110 cites W1996998168 @default.
- W2875362110 cites W1999741025 @default.
- W2875362110 cites W2002274796 @default.
- W2875362110 cites W2003365929 @default.
- W2875362110 cites W2009951217 @default.
- W2875362110 cites W2019651755 @default.
- W2875362110 cites W2021290477 @default.
- W2875362110 cites W2022044805 @default.
- W2875362110 cites W2022404538 @default.
- W2875362110 cites W2032292582 @default.
- W2875362110 cites W2035006468 @default.
- W2875362110 cites W2035953003 @default.
- W2875362110 cites W2042483271 @default.
- W2875362110 cites W2043973777 @default.
- W2875362110 cites W2044500696 @default.
- W2875362110 cites W2045355467 @default.
- W2875362110 cites W2063021587 @default.
- W2875362110 cites W2063988646 @default.
- W2875362110 cites W2065788353 @default.
- W2875362110 cites W2069547183 @default.
- W2875362110 cites W2075825337 @default.
- W2875362110 cites W2078399717 @default.
- W2875362110 cites W2083415217 @default.
- W2875362110 cites W2084417257 @default.
- W2875362110 cites W2088055068 @default.
- W2875362110 cites W2088791289 @default.
- W2875362110 cites W2091078638 @default.
- W2875362110 cites W2092047866 @default.
- W2875362110 cites W2093145699 @default.
- W2875362110 cites W2096969866 @default.
- W2875362110 cites W2108868029 @default.
- W2875362110 cites W2113127808 @default.
- W2875362110 cites W2119835964 @default.
- W2875362110 cites W2136602340 @default.
- W2875362110 cites W2141115819 @default.
- W2875362110 cites W2145920615 @default.
- W2875362110 cites W2150062983 @default.
- W2875362110 cites W2167720109 @default.
- W2875362110 cites W2169658509 @default.
- W2875362110 cites W2205685190 @default.
- W2875362110 cites W2302211741 @default.
- W2875362110 cites W2316442137 @default.
- W2875362110 cites W2342965561 @default.
- W2875362110 cites W2599912551 @default.
- W2875362110 cites W2642384746 @default.
- W2875362110 cites W2731103645 @default.
- W2875362110 cites W2770164694 @default.
- W2875362110 cites W637625958 @default.
- W2875362110 cites W639581896 @default.
- W2875362110 cites W1634277530 @default.
- W2875362110 doi "https://doi.org/10.1016/j.strusafe.2018.06.004" @default.
- W2875362110 hasPublicationYear "2018" @default.
- W2875362110 type Work @default.
- W2875362110 sameAs 2875362110 @default.
- W2875362110 citedByCount "2" @default.
- W2875362110 countsByYear W28753621102020 @default.
- W2875362110 countsByYear W28753621102021 @default.
- W2875362110 crossrefType "journal-article" @default.
- W2875362110 hasAuthorship W2875362110A5047401860 @default.
- W2875362110 hasAuthorship W2875362110A5071300168 @default.
- W2875362110 hasConcept C105795698 @default.
- W2875362110 hasConcept C109308471 @default.
- W2875362110 hasConcept C11413529 @default.
- W2875362110 hasConcept C121332964 @default.
- W2875362110 hasConcept C121684516 @default.
- W2875362110 hasConcept C126255220 @default.
- W2875362110 hasConcept C130402806 @default.
- W2875362110 hasConcept C134306372 @default.
- W2875362110 hasConcept C135628077 @default.
- W2875362110 hasConcept C137800194 @default.
- W2875362110 hasConcept C156439662 @default.
- W2875362110 hasConcept C186633575 @default.
- W2875362110 hasConcept C19499675 @default.
- W2875362110 hasConcept C197656079 @default.
- W2875362110 hasConcept C28826006 @default.
- W2875362110 hasConcept C32230216 @default.
- W2875362110 hasConcept C33923547 @default.
- W2875362110 hasConcept C41008148 @default.
- W2875362110 hasConcept C45374587 @default.
- W2875362110 hasConcept C502989409 @default.
- W2875362110 hasConcept C5917680 @default.
- W2875362110 hasConcept C73000952 @default.
- W2875362110 hasConcept C97355855 @default.
- W2875362110 hasConceptScore W2875362110C105795698 @default.
- W2875362110 hasConceptScore W2875362110C109308471 @default.
- W2875362110 hasConceptScore W2875362110C11413529 @default.