Matches in SemOpenAlex for { <https://semopenalex.org/work/W2876097688> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2876097688 abstract "In this paper, we discuss challenges when we try to automatically classify privacy policies using machine learning with words as the features. Since it is difficult for general public to understand privacy policies, it is necessary to support them to do that. To this end, the authors believe that machine learning is one of the promising ways because users can grasp the meaning of policies through outputs by a machine learning algorithm. Our final goal is to develop a system which automatically translates privacy policies into privacy labels [1]. Toward this goal, we classify sentences in privacy policies with category labels, using popular machine learning algorithms, such as a naive Bayes classifier.We choose these algorithms because we could use trained classifiers to evaluate keywords appropriate for privacy labels. Therefore, we adopt words as the features of those algorithms. Experimental results show about 85% accuracy. We think that much higher accuracy is necessary to achieve our final goal. By changing learning settings, we identified one reason of low accuracies such that privacy policies include many sentences which are not direct description of information about categories. It seems that such sentences are redundant but maybe they are essential in case of legal documents in order to prevent misinterpreting. Thus, it is important for machine learning algorithms to handle these redundant sentences appropriately." @default.
- W2876097688 created "2018-07-19" @default.
- W2876097688 creator A5013918876 @default.
- W2876097688 creator A5054965256 @default.
- W2876097688 creator A5082683333 @default.
- W2876097688 creator A5091754518 @default.
- W2876097688 date "2018-03-16" @default.
- W2876097688 modified "2023-09-23" @default.
- W2876097688 title "Challenges in Classifying Privacy Policies by Machine Learning with Word-based Features" @default.
- W2876097688 cites W2048089596 @default.
- W2876097688 cites W2108554506 @default.
- W2876097688 cites W2481087873 @default.
- W2876097688 doi "https://doi.org/10.1145/3199478.3199486" @default.
- W2876097688 hasPublicationYear "2018" @default.
- W2876097688 type Work @default.
- W2876097688 sameAs 2876097688 @default.
- W2876097688 citedByCount "5" @default.
- W2876097688 countsByYear W28760976882019 @default.
- W2876097688 countsByYear W28760976882020 @default.
- W2876097688 countsByYear W28760976882021 @default.
- W2876097688 crossrefType "proceedings-article" @default.
- W2876097688 hasAuthorship W2876097688A5013918876 @default.
- W2876097688 hasAuthorship W2876097688A5054965256 @default.
- W2876097688 hasAuthorship W2876097688A5082683333 @default.
- W2876097688 hasAuthorship W2876097688A5091754518 @default.
- W2876097688 hasConcept C102938260 @default.
- W2876097688 hasConcept C108827166 @default.
- W2876097688 hasConcept C123201435 @default.
- W2876097688 hasConcept C138885662 @default.
- W2876097688 hasConcept C154945302 @default.
- W2876097688 hasConcept C204321447 @default.
- W2876097688 hasConcept C41008148 @default.
- W2876097688 hasConcept C41895202 @default.
- W2876097688 hasConcept C90805587 @default.
- W2876097688 hasConceptScore W2876097688C102938260 @default.
- W2876097688 hasConceptScore W2876097688C108827166 @default.
- W2876097688 hasConceptScore W2876097688C123201435 @default.
- W2876097688 hasConceptScore W2876097688C138885662 @default.
- W2876097688 hasConceptScore W2876097688C154945302 @default.
- W2876097688 hasConceptScore W2876097688C204321447 @default.
- W2876097688 hasConceptScore W2876097688C41008148 @default.
- W2876097688 hasConceptScore W2876097688C41895202 @default.
- W2876097688 hasConceptScore W2876097688C90805587 @default.
- W2876097688 hasLocation W28760976881 @default.
- W2876097688 hasOpenAccess W2876097688 @default.
- W2876097688 hasPrimaryLocation W28760976881 @default.
- W2876097688 hasRelatedWork W1508636238 @default.
- W2876097688 hasRelatedWork W2116878667 @default.
- W2876097688 hasRelatedWork W2163661494 @default.
- W2876097688 hasRelatedWork W3024522029 @default.
- W2876097688 hasRelatedWork W3038106605 @default.
- W2876097688 hasRelatedWork W3107474891 @default.
- W2876097688 hasRelatedWork W3125725478 @default.
- W2876097688 hasRelatedWork W4241527182 @default.
- W2876097688 hasRelatedWork W4250923762 @default.
- W2876097688 hasRelatedWork W857570378 @default.
- W2876097688 isParatext "false" @default.
- W2876097688 isRetracted "false" @default.
- W2876097688 magId "2876097688" @default.
- W2876097688 workType "article" @default.