Matches in SemOpenAlex for { <https://semopenalex.org/work/W2877044630> ?p ?o ?g. }
- W2877044630 abstract "Security of information passing through the Internet is threatened by today's most advanced malware ranging from orchestrated botnets to much simpler polymorphic worms. These threads, as examples of zero-day attacks, are able to change their behavior several times at the early phases of their existence to bypass the network intrusion detection systems (NIDS). It is known that even well- designed, and frequently-updated signature-based NIDS cannot detect the zero-day treats due to the lack of an adequate signature database, adaptive to intelligent attacks on the Internet. On the other hand, applying traditional machine learning methods could not narrow this gap. More importantly, having an NIDS, it should be tested on malicious traffic dataset that not only represents known attacks, but also can to some extent reflect the characteristics of unknown, zero-day attacks. Generating such traffic is identified in the literature as one of the main obstacles for evaluating the effectiveness of NIDS. To address these issues, we apply Recurrent Neural Networks (RNNs) known as powerful tools in finding complex patterns and generating similar ones. In this regard, we first examine whether it is possible to generate new, unseen mutants of a polymorphic worm. Our results demonstrate that our synthetic mutants exhibit the same characteristics as the original mutants, i.e., known mutants fed into the RNN. Besides, we assess the ability of RNNs to generate synthetic signatures from the most advanced malware. We claim that by adding the RNN-generated, synthetic signatures to the set of the signatures of a signature-based NIDS it is possible to improve the malware detection rate of that. To support this and evaluate the feasibility of our approach, we conduct extensive experiments and provide exhaustive discussion on our experimental results." @default.
- W2877044630 created "2018-07-19" @default.
- W2877044630 creator A5001159554 @default.
- W2877044630 creator A5017195195 @default.
- W2877044630 creator A5055751923 @default.
- W2877044630 date "2018-07-09" @default.
- W2877044630 modified "2023-09-27" @default.
- W2877044630 title "Recurrent Neural Networks for Enhancement of Signature-based Network Intrusion Detection Systems." @default.
- W2877044630 cites W1538836445 @default.
- W2877044630 cites W1564475098 @default.
- W2877044630 cites W158061484 @default.
- W2877044630 cites W1583975142 @default.
- W2877044630 cites W1804946236 @default.
- W2877044630 cites W196214544 @default.
- W2877044630 cites W1982370770 @default.
- W2877044630 cites W1984525527 @default.
- W2877044630 cites W1998937898 @default.
- W2877044630 cites W2001487532 @default.
- W2877044630 cites W2002089154 @default.
- W2877044630 cites W2004215917 @default.
- W2877044630 cites W2008224380 @default.
- W2877044630 cites W2017603160 @default.
- W2877044630 cites W2033811087 @default.
- W2877044630 cites W2034362794 @default.
- W2877044630 cites W2046163812 @default.
- W2877044630 cites W2061079066 @default.
- W2877044630 cites W2064675550 @default.
- W2877044630 cites W2083477206 @default.
- W2877044630 cites W2093331366 @default.
- W2877044630 cites W2101109743 @default.
- W2877044630 cites W2116065364 @default.
- W2877044630 cites W2116261113 @default.
- W2877044630 cites W2116664051 @default.
- W2877044630 cites W2120432001 @default.
- W2877044630 cites W2131025216 @default.
- W2877044630 cites W2134385885 @default.
- W2877044630 cites W2134878402 @default.
- W2877044630 cites W2135208096 @default.
- W2877044630 cites W2135930857 @default.
- W2877044630 cites W2137786570 @default.
- W2877044630 cites W2142889610 @default.
- W2877044630 cites W2143612262 @default.
- W2877044630 cites W2145461202 @default.
- W2877044630 cites W2146762449 @default.
- W2877044630 cites W2150339049 @default.
- W2877044630 cites W2150847526 @default.
- W2877044630 cites W2155926039 @default.
- W2877044630 cites W2157153057 @default.
- W2877044630 cites W2167146581 @default.
- W2877044630 cites W2167615167 @default.
- W2877044630 cites W2169172206 @default.
- W2877044630 cites W2295071300 @default.
- W2877044630 cites W2342408547 @default.
- W2877044630 cites W2557283755 @default.
- W2877044630 cites W2585581321 @default.
- W2877044630 cites W2605135824 @default.
- W2877044630 cites W2622385665 @default.
- W2877044630 cites W2694823080 @default.
- W2877044630 hasPublicationYear "2018" @default.
- W2877044630 type Work @default.
- W2877044630 sameAs 2877044630 @default.
- W2877044630 citedByCount "1" @default.
- W2877044630 countsByYear W28770446302019 @default.
- W2877044630 crossrefType "posted-content" @default.
- W2877044630 hasAuthorship W2877044630A5001159554 @default.
- W2877044630 hasAuthorship W2877044630A5017195195 @default.
- W2877044630 hasAuthorship W2877044630A5055751923 @default.
- W2877044630 hasConcept C110875604 @default.
- W2877044630 hasConcept C111919701 @default.
- W2877044630 hasConcept C119857082 @default.
- W2877044630 hasConcept C124101348 @default.
- W2877044630 hasConcept C136764020 @default.
- W2877044630 hasConcept C147168706 @default.
- W2877044630 hasConcept C154945302 @default.
- W2877044630 hasConcept C22735295 @default.
- W2877044630 hasConcept C2524010 @default.
- W2877044630 hasConcept C2779696439 @default.
- W2877044630 hasConcept C33923547 @default.
- W2877044630 hasConcept C35525427 @default.
- W2877044630 hasConcept C38652104 @default.
- W2877044630 hasConcept C41008148 @default.
- W2877044630 hasConcept C50644808 @default.
- W2877044630 hasConcept C541664917 @default.
- W2877044630 hasConcept C98045186 @default.
- W2877044630 hasConceptScore W2877044630C110875604 @default.
- W2877044630 hasConceptScore W2877044630C111919701 @default.
- W2877044630 hasConceptScore W2877044630C119857082 @default.
- W2877044630 hasConceptScore W2877044630C124101348 @default.
- W2877044630 hasConceptScore W2877044630C136764020 @default.
- W2877044630 hasConceptScore W2877044630C147168706 @default.
- W2877044630 hasConceptScore W2877044630C154945302 @default.
- W2877044630 hasConceptScore W2877044630C22735295 @default.
- W2877044630 hasConceptScore W2877044630C2524010 @default.
- W2877044630 hasConceptScore W2877044630C2779696439 @default.
- W2877044630 hasConceptScore W2877044630C33923547 @default.
- W2877044630 hasConceptScore W2877044630C35525427 @default.
- W2877044630 hasConceptScore W2877044630C38652104 @default.
- W2877044630 hasConceptScore W2877044630C41008148 @default.
- W2877044630 hasConceptScore W2877044630C50644808 @default.
- W2877044630 hasConceptScore W2877044630C541664917 @default.