Matches in SemOpenAlex for { <https://semopenalex.org/work/W2877093701> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2877093701 abstract "Photovoltaic power prediction for reducing the impact of the grid-connected photovoltaic power generation system on the power system is of great significance. Aiming at the power generation characteristics of the photovoltaic system, a method of Elman neural network based photovoltaic power forecasting using association rules and kernel principal component analysis (KPCA) is proposed in this paper. Gray relation analysis is a means of data mining and used for selecting several power days which are highly correlated with predicted days. In order to remove redundant information, the kernel principal component analysis (KPCA) is used to extract the feature of photovoltaic (PV) power time series. The Elman neural network is used for power prediction due to its dynamic recursive performance. In view of the fact that the prediction error of the Elman neural network prediction model at the peak of power fluctuation is large, the Markov method is proposed to revise and compensate the prediction value of the model to further improve the prediction accuracy. The model is validated by using real data from the National Renewable Energy Laboratory. The results show that the proposed method can effectively improve the prediction accuracy and enhance the generalization ability of the neural network model, which has a good feasibility." @default.
- W2877093701 created "2018-07-19" @default.
- W2877093701 creator A5035759191 @default.
- W2877093701 creator A5052769076 @default.
- W2877093701 creator A5061223537 @default.
- W2877093701 creator A5081157514 @default.
- W2877093701 date "2018-07-01" @default.
- W2877093701 modified "2023-10-17" @default.
- W2877093701 title "Elman neural network based short-term photovoltaic power forecasting using association rules and kernel principal component analysis" @default.
- W2877093701 cites W1595044664 @default.
- W2877093701 cites W1697905932 @default.
- W2877093701 cites W1977108944 @default.
- W2877093701 cites W1988969170 @default.
- W2877093701 cites W1989129811 @default.
- W2877093701 cites W1989197083 @default.
- W2877093701 cites W2012797331 @default.
- W2877093701 cites W2019091079 @default.
- W2877093701 cites W2073515924 @default.
- W2877093701 cites W2088786192 @default.
- W2877093701 cites W2135178255 @default.
- W2877093701 cites W2226300851 @default.
- W2877093701 cites W2353013103 @default.
- W2877093701 cites W370477046 @default.
- W2877093701 doi "https://doi.org/10.1063/1.5022393" @default.
- W2877093701 hasPublicationYear "2018" @default.
- W2877093701 type Work @default.
- W2877093701 sameAs 2877093701 @default.
- W2877093701 citedByCount "10" @default.
- W2877093701 countsByYear W28770937012019 @default.
- W2877093701 countsByYear W28770937012020 @default.
- W2877093701 countsByYear W28770937012021 @default.
- W2877093701 countsByYear W28770937012022 @default.
- W2877093701 countsByYear W28770937012023 @default.
- W2877093701 crossrefType "journal-article" @default.
- W2877093701 hasAuthorship W2877093701A5035759191 @default.
- W2877093701 hasAuthorship W2877093701A5052769076 @default.
- W2877093701 hasAuthorship W2877093701A5061223537 @default.
- W2877093701 hasAuthorship W2877093701A5081157514 @default.
- W2877093701 hasConcept C119599485 @default.
- W2877093701 hasConcept C119857082 @default.
- W2877093701 hasConcept C121332964 @default.
- W2877093701 hasConcept C122280245 @default.
- W2877093701 hasConcept C12267149 @default.
- W2877093701 hasConcept C124101348 @default.
- W2877093701 hasConcept C127413603 @default.
- W2877093701 hasConcept C154945302 @default.
- W2877093701 hasConcept C163258240 @default.
- W2877093701 hasConcept C182335926 @default.
- W2877093701 hasConcept C27438332 @default.
- W2877093701 hasConcept C41008148 @default.
- W2877093701 hasConcept C41291067 @default.
- W2877093701 hasConcept C50644808 @default.
- W2877093701 hasConcept C62520636 @default.
- W2877093701 hasConcept C89227174 @default.
- W2877093701 hasConceptScore W2877093701C119599485 @default.
- W2877093701 hasConceptScore W2877093701C119857082 @default.
- W2877093701 hasConceptScore W2877093701C121332964 @default.
- W2877093701 hasConceptScore W2877093701C122280245 @default.
- W2877093701 hasConceptScore W2877093701C12267149 @default.
- W2877093701 hasConceptScore W2877093701C124101348 @default.
- W2877093701 hasConceptScore W2877093701C127413603 @default.
- W2877093701 hasConceptScore W2877093701C154945302 @default.
- W2877093701 hasConceptScore W2877093701C163258240 @default.
- W2877093701 hasConceptScore W2877093701C182335926 @default.
- W2877093701 hasConceptScore W2877093701C27438332 @default.
- W2877093701 hasConceptScore W2877093701C41008148 @default.
- W2877093701 hasConceptScore W2877093701C41291067 @default.
- W2877093701 hasConceptScore W2877093701C50644808 @default.
- W2877093701 hasConceptScore W2877093701C62520636 @default.
- W2877093701 hasConceptScore W2877093701C89227174 @default.
- W2877093701 hasFunder F4320321001 @default.
- W2877093701 hasFunder F4320322163 @default.
- W2877093701 hasFunder F4320322769 @default.
- W2877093701 hasIssue "4" @default.
- W2877093701 hasLocation W28770937011 @default.
- W2877093701 hasOpenAccess W2877093701 @default.
- W2877093701 hasPrimaryLocation W28770937011 @default.
- W2877093701 hasRelatedWork W2120337110 @default.
- W2877093701 hasRelatedWork W2169464058 @default.
- W2877093701 hasRelatedWork W2358824780 @default.
- W2877093701 hasRelatedWork W2373294592 @default.
- W2877093701 hasRelatedWork W2937631562 @default.
- W2877093701 hasRelatedWork W3004377704 @default.
- W2877093701 hasRelatedWork W3194539120 @default.
- W2877093701 hasRelatedWork W4225691219 @default.
- W2877093701 hasRelatedWork W4361795583 @default.
- W2877093701 hasRelatedWork W4362499384 @default.
- W2877093701 hasVolume "10" @default.
- W2877093701 isParatext "false" @default.
- W2877093701 isRetracted "false" @default.
- W2877093701 magId "2877093701" @default.
- W2877093701 workType "article" @default.