Matches in SemOpenAlex for { <https://semopenalex.org/work/W2882203834> ?p ?o ?g. }
- W2882203834 endingPage "328" @default.
- W2882203834 startingPage "314" @default.
- W2882203834 abstract "Abstract Evaporation is an essential component in hydrological processes, and accurate estimation of evaporation is of importance for sustainable management of water resources. This study conducted a national-scale assessment of different models for pan evaporation (Epan) estimation at 178 meteorological stations across different climatic zones of China, including the temperate continental zone (TCZ), temperate monsoon zone (TMZ), mountain plateau zone (MPZ) and subtropical monsoon zone (SMZ). Firstly, three data-driven models, including extreme learning machine (ELM), artificial neural networks optimized by particle swarm optimization (PSO-ANN) and genetic algorithm (GA-ANN), were trained with nine input combinations of climatic variables. The performance of the 27 proposed models along with the empirical Stephens and Stewart (SS) and physically-based PenPan models were investigated and compared using relative root mean square error (RRMSE), Nash-Sutcliffe coefficient (NS) and mean absolute error (MAE). The three statistical indicators were further normalized to global performance indicator (GPI), by which all the evaluated models can be easily ranked. The results showed that the data-driven models with complete inputs generally obtained more accurate Epan estimation, where the ELM model with full input data provided the best accuracy, with average RRMSE of 12.5%–15.2%, NS of 0.909–0.936 and MAE of 11.7–19.9 mm/m. Air temperature was found to be the most influential parameter to data-driven models, followed by sunshine duration, wind speed and relative humidity. The SS model provided slightly better results in MPZ and TCZ, and slightly less accurate results in SMZ and TMZ, compared with the data-driven models under the same input conditions. Overall, ELM was recommended as the best model for Epan estimation when all the selected climatic data are available, while temperature-based PSO-ANN is recommended in MPZ and SMZ and temperature-based GA-ANN is recommended in TCZ and TMZ when the other climatic data are missing." @default.
- W2882203834 created "2018-07-19" @default.
- W2882203834 creator A5004387898 @default.
- W2882203834 creator A5009817195 @default.
- W2882203834 creator A5042093032 @default.
- W2882203834 creator A5048795105 @default.
- W2882203834 creator A5054036938 @default.
- W2882203834 date "2018-09-01" @default.
- W2882203834 modified "2023-10-16" @default.
- W2882203834 title "National-scale assessment of pan evaporation models across different climatic zones of China" @default.
- W2882203834 cites W1188058200 @default.
- W2882203834 cites W1469381315 @default.
- W2882203834 cites W1532996006 @default.
- W2882203834 cites W1605898166 @default.
- W2882203834 cites W1916899590 @default.
- W2882203834 cites W1969336359 @default.
- W2882203834 cites W1969974566 @default.
- W2882203834 cites W1973739515 @default.
- W2882203834 cites W1975336843 @default.
- W2882203834 cites W1980246492 @default.
- W2882203834 cites W1988984080 @default.
- W2882203834 cites W2010876855 @default.
- W2882203834 cites W2014264352 @default.
- W2882203834 cites W2018342024 @default.
- W2882203834 cites W2021432630 @default.
- W2882203834 cites W2027939224 @default.
- W2882203834 cites W2039574924 @default.
- W2882203834 cites W2043120234 @default.
- W2882203834 cites W2043529050 @default.
- W2882203834 cites W2044120844 @default.
- W2882203834 cites W2045038746 @default.
- W2882203834 cites W2046863487 @default.
- W2882203834 cites W2077016463 @default.
- W2882203834 cites W2081830062 @default.
- W2882203834 cites W2084944700 @default.
- W2882203834 cites W2091150474 @default.
- W2882203834 cites W2111072639 @default.
- W2882203834 cites W2122511023 @default.
- W2882203834 cites W2133820293 @default.
- W2882203834 cites W2146282881 @default.
- W2882203834 cites W2146514017 @default.
- W2882203834 cites W2151976015 @default.
- W2882203834 cites W2162462697 @default.
- W2882203834 cites W2163850148 @default.
- W2882203834 cites W2172396214 @default.
- W2882203834 cites W2288329827 @default.
- W2882203834 cites W2296778215 @default.
- W2882203834 cites W2471545429 @default.
- W2882203834 cites W2518675717 @default.
- W2882203834 cites W2527066115 @default.
- W2882203834 cites W2555645875 @default.
- W2882203834 cites W2558918493 @default.
- W2882203834 cites W2606920954 @default.
- W2882203834 cites W2614048634 @default.
- W2882203834 cites W2749106749 @default.
- W2882203834 cites W2771056109 @default.
- W2882203834 cites W2780554042 @default.
- W2882203834 cites W2794093640 @default.
- W2882203834 cites W332085899 @default.
- W2882203834 cites W751718722 @default.
- W2882203834 doi "https://doi.org/10.1016/j.jhydrol.2018.07.013" @default.
- W2882203834 hasPublicationYear "2018" @default.
- W2882203834 type Work @default.
- W2882203834 sameAs 2882203834 @default.
- W2882203834 citedByCount "65" @default.
- W2882203834 countsByYear W28822038342018 @default.
- W2882203834 countsByYear W28822038342019 @default.
- W2882203834 countsByYear W28822038342020 @default.
- W2882203834 countsByYear W28822038342021 @default.
- W2882203834 countsByYear W28822038342022 @default.
- W2882203834 countsByYear W28822038342023 @default.
- W2882203834 crossrefType "journal-article" @default.
- W2882203834 hasAuthorship W2882203834A5004387898 @default.
- W2882203834 hasAuthorship W2882203834A5009817195 @default.
- W2882203834 hasAuthorship W2882203834A5042093032 @default.
- W2882203834 hasAuthorship W2882203834A5048795105 @default.
- W2882203834 hasAuthorship W2882203834A5054036938 @default.
- W2882203834 hasConcept C100970517 @default.
- W2882203834 hasConcept C127313418 @default.
- W2882203834 hasConcept C153294291 @default.
- W2882203834 hasConcept C166957645 @default.
- W2882203834 hasConcept C187320778 @default.
- W2882203834 hasConcept C191935318 @default.
- W2882203834 hasConcept C205649164 @default.
- W2882203834 hasConcept C23430798 @default.
- W2882203834 hasConcept C2778755073 @default.
- W2882203834 hasConcept C39432304 @default.
- W2882203834 hasConcept C49204034 @default.
- W2882203834 hasConcept C58640448 @default.
- W2882203834 hasConcept C61441594 @default.
- W2882203834 hasConcept C76886044 @default.
- W2882203834 hasConceptScore W2882203834C100970517 @default.
- W2882203834 hasConceptScore W2882203834C127313418 @default.
- W2882203834 hasConceptScore W2882203834C153294291 @default.
- W2882203834 hasConceptScore W2882203834C166957645 @default.
- W2882203834 hasConceptScore W2882203834C187320778 @default.
- W2882203834 hasConceptScore W2882203834C191935318 @default.
- W2882203834 hasConceptScore W2882203834C205649164 @default.