Matches in SemOpenAlex for { <https://semopenalex.org/work/W2882986911> ?p ?o ?g. }
- W2882986911 endingPage "108" @default.
- W2882986911 startingPage "92" @default.
- W2882986911 abstract "Abstract In practice, in order to recover the secret key used by a masking device, higher order side channel attacks (HOSCA) are needed. In HOSCA, physical leakages corresponding to the processing of different sensitive intermediate values can be exploited to recover the secret key used by the target device. At ASIACRYPT 2014, Bruneau et al. proposed higher order optimal distinguisher (HOOD) to recover the secret key used by the target device, and they proved that among different styles of HOSCA, HOOD shows the best efficiency in different scenarios. In HOOD, in order to recover the secret key used by the target device, physical leakages at one leakage sample corresponding to the processing of a certain sensitive intermediate value are exploited. However, there exist more than one leakage sample that correspond to the processing of a certain sensitive intermediate value, and physical leakages contained in multiple leakage samples can be exploited to recover the secret key used by the target device. In light of this, we propose multiple leakage samples based HOOD (MLS-HOOD). We note that with MLS-HOOD, physical leakages of the target device can be sufficiently exploited to efficiently recover its secret key. In fact, we will show its advantage over HOOD and another style of HOSCA in both simulated and real scenarios." @default.
- W2882986911 created "2018-08-03" @default.
- W2882986911 creator A5021631720 @default.
- W2882986911 creator A5063991302 @default.
- W2882986911 date "2018-10-01" @default.
- W2882986911 modified "2023-10-17" @default.
- W2882986911 title "Multiple leakage samples based higher order optimal distinguisher" @default.
- W2882986911 cites W101112147 @default.
- W2882986911 cites W1412796964 @default.
- W2882986911 cites W1482353292 @default.
- W2882986911 cites W1503689022 @default.
- W2882986911 cites W1511843316 @default.
- W2882986911 cites W1536448783 @default.
- W2882986911 cites W1548656471 @default.
- W2882986911 cites W1554257389 @default.
- W2882986911 cites W1560093457 @default.
- W2882986911 cites W1572251059 @default.
- W2882986911 cites W1613874182 @default.
- W2882986911 cites W1748081333 @default.
- W2882986911 cites W1752847028 @default.
- W2882986911 cites W1838677899 @default.
- W2882986911 cites W1847989447 @default.
- W2882986911 cites W1883495059 @default.
- W2882986911 cites W1894646615 @default.
- W2882986911 cites W1897761346 @default.
- W2882986911 cites W1968836297 @default.
- W2882986911 cites W1969826591 @default.
- W2882986911 cites W2112002249 @default.
- W2882986911 cites W2120203085 @default.
- W2882986911 cites W2124164831 @default.
- W2882986911 cites W2124785100 @default.
- W2882986911 cites W2145829971 @default.
- W2882986911 cites W2152881483 @default.
- W2882986911 cites W2153942381 @default.
- W2882986911 cites W2154909745 @default.
- W2882986911 cites W2155938490 @default.
- W2882986911 cites W2161740631 @default.
- W2882986911 cites W2170478686 @default.
- W2882986911 cites W2200441583 @default.
- W2882986911 cites W2247006822 @default.
- W2882986911 cites W2345804538 @default.
- W2882986911 cites W2474114598 @default.
- W2882986911 cites W2516108306 @default.
- W2882986911 cites W2607766774 @default.
- W2882986911 cites W2612018177 @default.
- W2882986911 cites W2619172401 @default.
- W2882986911 cites W2738321163 @default.
- W2882986911 cites W2759450573 @default.
- W2882986911 cites W2778408454 @default.
- W2882986911 cites W2778424331 @default.
- W2882986911 cites W2799291336 @default.
- W2882986911 cites W2914572864 @default.
- W2882986911 cites W37768642 @default.
- W2882986911 cites W49529705 @default.
- W2882986911 cites W57414702 @default.
- W2882986911 cites W96383189 @default.
- W2882986911 doi "https://doi.org/10.1016/j.ins.2018.07.042" @default.
- W2882986911 hasPublicationYear "2018" @default.
- W2882986911 type Work @default.
- W2882986911 sameAs 2882986911 @default.
- W2882986911 citedByCount "1" @default.
- W2882986911 countsByYear W28829869112021 @default.
- W2882986911 crossrefType "journal-article" @default.
- W2882986911 hasAuthorship W2882986911A5021631720 @default.
- W2882986911 hasAuthorship W2882986911A5063991302 @default.
- W2882986911 hasConcept C11413529 @default.
- W2882986911 hasConcept C121332964 @default.
- W2882986911 hasConcept C139719470 @default.
- W2882986911 hasConcept C142362112 @default.
- W2882986911 hasConcept C153349607 @default.
- W2882986911 hasConcept C162324750 @default.
- W2882986911 hasConcept C178489894 @default.
- W2882986911 hasConcept C198531522 @default.
- W2882986911 hasConcept C26517878 @default.
- W2882986911 hasConcept C2777042071 @default.
- W2882986911 hasConcept C2777402240 @default.
- W2882986911 hasConcept C38652104 @default.
- W2882986911 hasConcept C41008148 @default.
- W2882986911 hasConcept C49289754 @default.
- W2882986911 hasConcept C97355855 @default.
- W2882986911 hasConceptScore W2882986911C11413529 @default.
- W2882986911 hasConceptScore W2882986911C121332964 @default.
- W2882986911 hasConceptScore W2882986911C139719470 @default.
- W2882986911 hasConceptScore W2882986911C142362112 @default.
- W2882986911 hasConceptScore W2882986911C153349607 @default.
- W2882986911 hasConceptScore W2882986911C162324750 @default.
- W2882986911 hasConceptScore W2882986911C178489894 @default.
- W2882986911 hasConceptScore W2882986911C198531522 @default.
- W2882986911 hasConceptScore W2882986911C26517878 @default.
- W2882986911 hasConceptScore W2882986911C2777042071 @default.
- W2882986911 hasConceptScore W2882986911C2777402240 @default.
- W2882986911 hasConceptScore W2882986911C38652104 @default.
- W2882986911 hasConceptScore W2882986911C41008148 @default.
- W2882986911 hasConceptScore W2882986911C49289754 @default.
- W2882986911 hasConceptScore W2882986911C97355855 @default.
- W2882986911 hasFunder F4320321001 @default.
- W2882986911 hasFunder F4320321133 @default.
- W2882986911 hasLocation W28829869111 @default.