Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883042145> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2883042145 endingPage "26" @default.
- W2883042145 startingPage "17" @default.
- W2883042145 abstract "This article reveals an unsupervised learning approach for determining the polarity of unstructured text in big data environment. The key inspiration for sentiment analysis research is essential for end users or e-commerce firms with local and global languages who expressed views about certain entities or subjects in social media or blogs or web resources. In proposed approach, applied an unsupervised learning approach with the help of idiom pattern extraction in determining favorable or unfavorable opinions or sentiments. Prior methods have achieved precision of sentiment classification accuracy on English language text up to 81.33% on a movie dataset with two co-occurrences of sentiment words phrases. This approach addressed the enhancement of sentiment classification accuracy in unstructured text in a big data environment with the help of extracting phrase patterns with tri-co-occurrences sentiment words. Proposed approach used two datasets such as cornel movie review and university selection datasets that are publicly available. Lastly, a review document is classified after comprehensive computation of semantic orientation of the phrases into positive or negative." @default.
- W2883042145 created "2018-08-03" @default.
- W2883042145 creator A5011484617 @default.
- W2883042145 creator A5014111269 @default.
- W2883042145 creator A5026847903 @default.
- W2883042145 date "2018-01-01" @default.
- W2883042145 modified "2023-09-24" @default.
- W2883042145 title "An Enhanced Unsupervised Learning Approach for Sentiment Analysis Using Extraction of Tri-Co-Occurrence Words Phrases" @default.
- W2883042145 cites W1964377250 @default.
- W2883042145 cites W2095579012 @default.
- W2883042145 cites W2114524997 @default.
- W2883042145 cites W2153566404 @default.
- W2883042145 cites W2215376118 @default.
- W2883042145 cites W2416550067 @default.
- W2883042145 cites W2521883249 @default.
- W2883042145 doi "https://doi.org/10.1007/978-981-10-8228-3_3" @default.
- W2883042145 hasPublicationYear "2018" @default.
- W2883042145 type Work @default.
- W2883042145 sameAs 2883042145 @default.
- W2883042145 citedByCount "5" @default.
- W2883042145 countsByYear W28830421452019 @default.
- W2883042145 countsByYear W28830421452020 @default.
- W2883042145 crossrefType "book-chapter" @default.
- W2883042145 hasAuthorship W2883042145A5011484617 @default.
- W2883042145 hasAuthorship W2883042145A5014111269 @default.
- W2883042145 hasAuthorship W2883042145A5026847903 @default.
- W2883042145 hasConcept C124101348 @default.
- W2883042145 hasConcept C136764020 @default.
- W2883042145 hasConcept C154945302 @default.
- W2883042145 hasConcept C204321447 @default.
- W2883042145 hasConcept C2776224158 @default.
- W2883042145 hasConcept C41008148 @default.
- W2883042145 hasConcept C518677369 @default.
- W2883042145 hasConcept C66402592 @default.
- W2883042145 hasConcept C75684735 @default.
- W2883042145 hasConcept C8038995 @default.
- W2883042145 hasConcept C81917197 @default.
- W2883042145 hasConceptScore W2883042145C124101348 @default.
- W2883042145 hasConceptScore W2883042145C136764020 @default.
- W2883042145 hasConceptScore W2883042145C154945302 @default.
- W2883042145 hasConceptScore W2883042145C204321447 @default.
- W2883042145 hasConceptScore W2883042145C2776224158 @default.
- W2883042145 hasConceptScore W2883042145C41008148 @default.
- W2883042145 hasConceptScore W2883042145C518677369 @default.
- W2883042145 hasConceptScore W2883042145C66402592 @default.
- W2883042145 hasConceptScore W2883042145C75684735 @default.
- W2883042145 hasConceptScore W2883042145C8038995 @default.
- W2883042145 hasConceptScore W2883042145C81917197 @default.
- W2883042145 hasLocation W28830421451 @default.
- W2883042145 hasOpenAccess W2883042145 @default.
- W2883042145 hasPrimaryLocation W28830421451 @default.
- W2883042145 hasRelatedWork W1510331301 @default.
- W2883042145 hasRelatedWork W1530327797 @default.
- W2883042145 hasRelatedWork W154934745 @default.
- W2883042145 hasRelatedWork W2001614588 @default.
- W2883042145 hasRelatedWork W2032369208 @default.
- W2883042145 hasRelatedWork W2106886415 @default.
- W2883042145 hasRelatedWork W2113459411 @default.
- W2883042145 hasRelatedWork W2150405852 @default.
- W2883042145 hasRelatedWork W2251770468 @default.
- W2883042145 hasRelatedWork W2325271364 @default.
- W2883042145 hasRelatedWork W2335703454 @default.
- W2883042145 hasRelatedWork W2541237046 @default.
- W2883042145 hasRelatedWork W2544650307 @default.
- W2883042145 hasRelatedWork W2603943850 @default.
- W2883042145 hasRelatedWork W2625815975 @default.
- W2883042145 hasRelatedWork W2759864339 @default.
- W2883042145 hasRelatedWork W2906739789 @default.
- W2883042145 hasRelatedWork W2966614482 @default.
- W2883042145 hasRelatedWork W3002868720 @default.
- W2883042145 hasRelatedWork W3134813467 @default.
- W2883042145 isParatext "false" @default.
- W2883042145 isRetracted "false" @default.
- W2883042145 magId "2883042145" @default.
- W2883042145 workType "book-chapter" @default.