Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883105610> ?p ?o ?g. }
- W2883105610 endingPage "215" @default.
- W2883105610 startingPage "197" @default.
- W2883105610 abstract "This paper presents a framework for automatically learning shape and appearance models for medical (and certain other) images. The algorithm was developed with the aim of eventually enabling distributed privacy-preserving analysis of brain image data, such that shared information (shape and appearance basis functions) may be passed across sites, whereas latent variables that encode individual images remain secure within each site. These latent variables are proposed as features for privacy-preserving data mining applications. The approach is demonstrated qualitatively on the KDEF dataset of 2D face images, showing that it can align images that traditionally require shape and appearance models trained using manually annotated data (manually defined landmarks etc.). It is applied to the MNIST dataset of handwritten digits to show its potential for machine learning applications, particularly when training data is limited. The model is able to handle missing data, which allows it to be cross-validated according to how well it can predict left-out voxels. The suitability of the derived features for classifying individuals into patient groups was assessed by applying it to a dataset of over 1900 segmented T1-weighted MR images, which included images from the COBRE and ABIDE datasets." @default.
- W2883105610 created "2018-08-03" @default.
- W2883105610 creator A5029410349 @default.
- W2883105610 creator A5045319786 @default.
- W2883105610 creator A5048826760 @default.
- W2883105610 creator A5089640308 @default.
- W2883105610 date "2019-07-01" @default.
- W2883105610 modified "2023-10-13" @default.
- W2883105610 title "An algorithm for learning shape and appearance models without annotations" @default.
- W2883105610 cites W1743786291 @default.
- W2883105610 cites W1835013956 @default.
- W2883105610 cites W1967251218 @default.
- W2883105610 cites W1982547105 @default.
- W2883105610 cites W1987565821 @default.
- W2883105610 cites W2004230500 @default.
- W2883105610 cites W2019836674 @default.
- W2883105610 cites W2021740542 @default.
- W2883105610 cites W2024524081 @default.
- W2883105610 cites W2032618685 @default.
- W2883105610 cites W2038952578 @default.
- W2883105610 cites W2049114803 @default.
- W2883105610 cites W2057175746 @default.
- W2883105610 cites W2057739090 @default.
- W2883105610 cites W2063237661 @default.
- W2883105610 cites W2063252599 @default.
- W2883105610 cites W2072072671 @default.
- W2883105610 cites W2074745044 @default.
- W2883105610 cites W2076114154 @default.
- W2883105610 cites W2078604986 @default.
- W2883105610 cites W2082541576 @default.
- W2883105610 cites W2082598062 @default.
- W2883105610 cites W2089940272 @default.
- W2883105610 cites W2100968369 @default.
- W2883105610 cites W2105866209 @default.
- W2883105610 cites W2106033751 @default.
- W2883105610 cites W2108623767 @default.
- W2883105610 cites W2112796928 @default.
- W2883105610 cites W2115381128 @default.
- W2883105610 cites W2117340355 @default.
- W2883105610 cites W2121721759 @default.
- W2883105610 cites W2124260444 @default.
- W2883105610 cites W2128907102 @default.
- W2883105610 cites W2132661331 @default.
- W2883105610 cites W2136145485 @default.
- W2883105610 cites W2152826865 @default.
- W2883105610 cites W2155298532 @default.
- W2883105610 cites W2169005503 @default.
- W2883105610 cites W2170167891 @default.
- W2883105610 cites W2293342147 @default.
- W2883105610 cites W2501546088 @default.
- W2883105610 cites W2561837554 @default.
- W2883105610 cites W2733533037 @default.
- W2883105610 cites W2793272055 @default.
- W2883105610 cites W2800044299 @default.
- W2883105610 cites W2807222878 @default.
- W2883105610 cites W4230920194 @default.
- W2883105610 cites W813277965 @default.
- W2883105610 doi "https://doi.org/10.1016/j.media.2019.04.008" @default.
- W2883105610 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6554617" @default.
- W2883105610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31096134" @default.
- W2883105610 hasPublicationYear "2019" @default.
- W2883105610 type Work @default.
- W2883105610 sameAs 2883105610 @default.
- W2883105610 citedByCount "7" @default.
- W2883105610 countsByYear W28831056102019 @default.
- W2883105610 countsByYear W28831056102020 @default.
- W2883105610 countsByYear W28831056102021 @default.
- W2883105610 crossrefType "journal-article" @default.
- W2883105610 hasAuthorship W2883105610A5029410349 @default.
- W2883105610 hasAuthorship W2883105610A5045319786 @default.
- W2883105610 hasAuthorship W2883105610A5048826760 @default.
- W2883105610 hasAuthorship W2883105610A5089640308 @default.
- W2883105610 hasBestOaLocation W28831056101 @default.
- W2883105610 hasConcept C104317684 @default.
- W2883105610 hasConcept C108583219 @default.
- W2883105610 hasConcept C115961682 @default.
- W2883105610 hasConcept C119857082 @default.
- W2883105610 hasConcept C144024400 @default.
- W2883105610 hasConcept C153180895 @default.
- W2883105610 hasConcept C154945302 @default.
- W2883105610 hasConcept C185592680 @default.
- W2883105610 hasConcept C190502265 @default.
- W2883105610 hasConcept C2779304628 @default.
- W2883105610 hasConcept C31972630 @default.
- W2883105610 hasConcept C36289849 @default.
- W2883105610 hasConcept C41008148 @default.
- W2883105610 hasConcept C54170458 @default.
- W2883105610 hasConcept C55493867 @default.
- W2883105610 hasConcept C66746571 @default.
- W2883105610 hasConcept C83248878 @default.
- W2883105610 hasConceptScore W2883105610C104317684 @default.
- W2883105610 hasConceptScore W2883105610C108583219 @default.
- W2883105610 hasConceptScore W2883105610C115961682 @default.
- W2883105610 hasConceptScore W2883105610C119857082 @default.
- W2883105610 hasConceptScore W2883105610C144024400 @default.
- W2883105610 hasConceptScore W2883105610C153180895 @default.
- W2883105610 hasConceptScore W2883105610C154945302 @default.
- W2883105610 hasConceptScore W2883105610C185592680 @default.