Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883153548> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2883153548 abstract "Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance." @default.
- W2883153548 created "2018-08-03" @default.
- W2883153548 creator A5071633375 @default.
- W2883153548 date "2019-07-15" @default.
- W2883153548 modified "2023-09-27" @default.
- W2883153548 title "Human Activity Recognition using Fourier Transform Inspired Deep Learning Combination Model" @default.
- W2883153548 doi "https://doi.org/10.2174/2210327908666180727123657" @default.
- W2883153548 hasPublicationYear "2019" @default.
- W2883153548 type Work @default.
- W2883153548 sameAs 2883153548 @default.
- W2883153548 citedByCount "1" @default.
- W2883153548 countsByYear W28831535482021 @default.
- W2883153548 crossrefType "journal-article" @default.
- W2883153548 hasAuthorship W2883153548A5071633375 @default.
- W2883153548 hasConcept C108583219 @default.
- W2883153548 hasConcept C153180895 @default.
- W2883153548 hasConcept C154945302 @default.
- W2883153548 hasConcept C41008148 @default.
- W2883153548 hasConceptScore W2883153548C108583219 @default.
- W2883153548 hasConceptScore W2883153548C153180895 @default.
- W2883153548 hasConceptScore W2883153548C154945302 @default.
- W2883153548 hasConceptScore W2883153548C41008148 @default.
- W2883153548 hasLocation W28831535481 @default.
- W2883153548 hasOpenAccess W2883153548 @default.
- W2883153548 hasPrimaryLocation W28831535481 @default.
- W2883153548 hasRelatedWork W108880357 @default.
- W2883153548 hasRelatedWork W145550743 @default.
- W2883153548 hasRelatedWork W1547147576 @default.
- W2883153548 hasRelatedWork W1598185931 @default.
- W2883153548 hasRelatedWork W1975093459 @default.
- W2883153548 hasRelatedWork W1983513158 @default.
- W2883153548 hasRelatedWork W2015135870 @default.
- W2883153548 hasRelatedWork W2037328875 @default.
- W2883153548 hasRelatedWork W2109739721 @default.
- W2883153548 hasRelatedWork W2169185394 @default.
- W2883153548 hasRelatedWork W2287363016 @default.
- W2883153548 hasRelatedWork W2380246189 @default.
- W2883153548 hasRelatedWork W2547277574 @default.
- W2883153548 hasRelatedWork W2980035261 @default.
- W2883153548 hasRelatedWork W3015425942 @default.
- W2883153548 hasRelatedWork W3108439314 @default.
- W2883153548 hasRelatedWork W3206507707 @default.
- W2883153548 hasRelatedWork W203801365 @default.
- W2883153548 hasRelatedWork W2575217452 @default.
- W2883153548 hasRelatedWork W2803765771 @default.
- W2883153548 isParatext "false" @default.
- W2883153548 isRetracted "false" @default.
- W2883153548 magId "2883153548" @default.
- W2883153548 workType "article" @default.