Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883178082> ?p ?o ?g. }
- W2883178082 abstract "This chapter introduces the BEM in its h −version. First we make Fourier expansion of Chap. 3 more precise by asymptotic error estimates. Then we prove direct and inverse approximation estimates for periodic spline approximation on curves. Hence we develop the analysis of Galerkin methods and collocation methods for Symm’s integral equation towards optimal a priori error estimates. Moreover, we subsume Galerkin and collocation methods as general projection methods. To this end we extend the above treatment of positive definite bilinear forms to the analysis of a sequence of linear operators that satisfy a uniform Garding inequality and establish stability and optimal a priori error estimates in this more general setting. Interpreting several variants of collocation methods that combine collocation and quadrature as extended Galerkin methods we include their numerical analysis as well. Then augmenting the boundary element ansatz spaces by known singularity functions the Galerkin method is shown to converge with higher convergence rates. Finally to obtain higher convergence rates in weaker norms than the energy norm the Aubin–Nitsche duality estimates of FEM are extended to BEM so that it allows the incorporation of the singular solution expansion for nonsmooth domains. Sections 6.1–6.4 are based on the classroom notes by M. Costabel [116] whereas Sects. 6.5.1–6.5.6 are based on the classroom notes by W.L. Wendland [430]. Improved estimates of local type, pointwise estimates and postprocessing with the K-operator are considered in Sects. 6.5.7–6.5.9. Discrete collocation with trigonometric polynomials, where the concept of finite section operators is used, is a subject of Sect. 6.6. In Sect. 6.7 the standard BEM is enriched by special singularity functions modelling the behaviour of the solution near corners, thus yielding improved convergence. In Sect. 6.8 Galerkin-Petrov methods are considered. Section 6.9 presents the Arnold-Wendland approach to reformulate a collocation method as a Galerkin method whereas qualocation is investigated in Sect. 6.10. In Sect. 6.11 the use of radial basis functions (a meshless method) and of spherical splines in the Galerkin scheme is demonstrated for problems on the unit sphere. Integral equations of the first kind with the single layer and double layer potentials are our main subject. Integral equations of the second kind are studied only briefly, e.g. at the end of Sect. 6.4." @default.
- W2883178082 created "2018-08-03" @default.
- W2883178082 creator A5058415613 @default.
- W2883178082 creator A5080759662 @default.
- W2883178082 date "2018-01-01" @default.
- W2883178082 modified "2023-10-06" @default.
- W2883178082 title "A Primer to Boundary Element Methods" @default.
- W2883178082 cites W106049708 @default.
- W2883178082 cites W1499757726 @default.
- W2883178082 cites W1522425331 @default.
- W2883178082 cites W194590998 @default.
- W2883178082 cites W1964627740 @default.
- W2883178082 cites W1969287581 @default.
- W2883178082 cites W1971314169 @default.
- W2883178082 cites W1972128259 @default.
- W2883178082 cites W1974517474 @default.
- W2883178082 cites W1975782244 @default.
- W2883178082 cites W1977010688 @default.
- W2883178082 cites W1977430072 @default.
- W2883178082 cites W1981257687 @default.
- W2883178082 cites W1981387538 @default.
- W2883178082 cites W1988604300 @default.
- W2883178082 cites W1994031762 @default.
- W2883178082 cites W1998857537 @default.
- W2883178082 cites W2010904078 @default.
- W2883178082 cites W2011448430 @default.
- W2883178082 cites W2012800328 @default.
- W2883178082 cites W2015466529 @default.
- W2883178082 cites W2017737583 @default.
- W2883178082 cites W2019098734 @default.
- W2883178082 cites W2021670188 @default.
- W2883178082 cites W2022180481 @default.
- W2883178082 cites W2026552342 @default.
- W2883178082 cites W2026629306 @default.
- W2883178082 cites W2030713763 @default.
- W2883178082 cites W2031210500 @default.
- W2883178082 cites W2031668753 @default.
- W2883178082 cites W2032756453 @default.
- W2883178082 cites W2039131464 @default.
- W2883178082 cites W2040314635 @default.
- W2883178082 cites W2041899820 @default.
- W2883178082 cites W2043347951 @default.
- W2883178082 cites W2046334963 @default.
- W2883178082 cites W2049614843 @default.
- W2883178082 cites W2052863731 @default.
- W2883178082 cites W2058405244 @default.
- W2883178082 cites W2059450605 @default.
- W2883178082 cites W2060596236 @default.
- W2883178082 cites W2065286616 @default.
- W2883178082 cites W2073805195 @default.
- W2883178082 cites W2084196626 @default.
- W2883178082 cites W2088557300 @default.
- W2883178082 cites W2093450271 @default.
- W2883178082 cites W2106265232 @default.
- W2883178082 cites W2118785074 @default.
- W2883178082 cites W2123585777 @default.
- W2883178082 cites W2305310791 @default.
- W2883178082 cites W235114390 @default.
- W2883178082 cites W2473718128 @default.
- W2883178082 cites W2563927076 @default.
- W2883178082 cites W2791488410 @default.
- W2883178082 cites W2805025900 @default.
- W2883178082 cites W4205634890 @default.
- W2883178082 cites W4213212409 @default.
- W2883178082 cites W4235681198 @default.
- W2883178082 cites W4249650585 @default.
- W2883178082 cites W4252219741 @default.
- W2883178082 doi "https://doi.org/10.1007/978-3-319-92001-6_6" @default.
- W2883178082 hasPublicationYear "2018" @default.
- W2883178082 type Work @default.
- W2883178082 sameAs 2883178082 @default.
- W2883178082 citedByCount "0" @default.
- W2883178082 crossrefType "book-chapter" @default.
- W2883178082 hasAuthorship W2883178082A5058415613 @default.
- W2883178082 hasAuthorship W2883178082A5080759662 @default.
- W2883178082 hasConcept C119599485 @default.
- W2883178082 hasConcept C121332964 @default.
- W2883178082 hasConcept C127313418 @default.
- W2883178082 hasConcept C127413603 @default.
- W2883178082 hasConcept C134306372 @default.
- W2883178082 hasConcept C135628077 @default.
- W2883178082 hasConcept C17744445 @default.
- W2883178082 hasConcept C186899397 @default.
- W2883178082 hasConcept C191795146 @default.
- W2883178082 hasConcept C199539241 @default.
- W2883178082 hasConcept C28826006 @default.
- W2883178082 hasConcept C33923547 @default.
- W2883178082 hasConcept C62649853 @default.
- W2883178082 hasConcept C62869609 @default.
- W2883178082 hasConcept C80023036 @default.
- W2883178082 hasConcept C97355855 @default.
- W2883178082 hasConceptScore W2883178082C119599485 @default.
- W2883178082 hasConceptScore W2883178082C121332964 @default.
- W2883178082 hasConceptScore W2883178082C127313418 @default.
- W2883178082 hasConceptScore W2883178082C127413603 @default.
- W2883178082 hasConceptScore W2883178082C134306372 @default.
- W2883178082 hasConceptScore W2883178082C135628077 @default.
- W2883178082 hasConceptScore W2883178082C17744445 @default.
- W2883178082 hasConceptScore W2883178082C186899397 @default.
- W2883178082 hasConceptScore W2883178082C191795146 @default.