Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883207145> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2883207145 abstract "Author(s): Hoysala, Swathi Vishwanath | Advisor(s): Palsson, Bernhard O | Abstract: Knowing how a microbe senses environmental inputs and regulates metabolic changes is important for metabolic engineers trying to direct microbial resources and reactions to specific pathways. Prediction of metabolic changes that result from genetic or environmental perturbations has several important applications, including diagnosing metabolic disorders and discovering novel drug targets. Most of the research in the field of modeling transcriptional regulatory networks (TRNs) and their metabolic effects focuses on integrating metabolic networks with additional data like transcriptional or genomic data. However, these existing methods are limited by the availability of datasets and the huge parameter space associated with TRN models. Thus, there is a need for alternative approaches to modeling regulation of metabolic networks.It was recently established that microbial cells contain flux sensors which measure the rate at which enzymatic reactions take place, and then adjust, or dial, certain reactions and pathway fluxes. We hypothesize that these flux sensors provide enough information to predict the change in metabolic “dials”, i.e flux splits between different pathways. This project aims to prove the above-mentioned hypothesis using statistical modeling of sensors and dials data in metabolic network simulations.Using Markov Chain Monte Carlo sampling methods, we sample the flux states of the Escherichia coli K-12 MG1655 strain under varying nutrient sources. We sample from 34 conditions to create a dataset with 340000 datapoints, each representing a unique feasible metabolic flux. We then apply statistical modeling techniques including linear regression, decision trees and ensemble learning methods to predict metabolic dial values using sensor values as input. The results from the statistical modeling techniques show that sensors can effectively predict the dial values without the need for additional data like transcriptional or genomic data." @default.
- W2883207145 created "2018-08-03" @default.
- W2883207145 creator A5005953853 @default.
- W2883207145 date "2018-01-01" @default.
- W2883207145 modified "2023-09-23" @default.
- W2883207145 title "Statistical Modeling of Sensors and Dials in Metabolic Networks" @default.
- W2883207145 hasPublicationYear "2018" @default.
- W2883207145 type Work @default.
- W2883207145 sameAs 2883207145 @default.
- W2883207145 citedByCount "0" @default.
- W2883207145 crossrefType "journal-article" @default.
- W2883207145 hasAuthorship W2883207145A5005953853 @default.
- W2883207145 hasConcept C101810790 @default.
- W2883207145 hasConcept C104317684 @default.
- W2883207145 hasConcept C106131492 @default.
- W2883207145 hasConcept C107673813 @default.
- W2883207145 hasConcept C111350023 @default.
- W2883207145 hasConcept C119857082 @default.
- W2883207145 hasConcept C124101348 @default.
- W2883207145 hasConcept C127413603 @default.
- W2883207145 hasConcept C134018914 @default.
- W2883207145 hasConcept C140779682 @default.
- W2883207145 hasConcept C154945302 @default.
- W2883207145 hasConcept C160941953 @default.
- W2883207145 hasConcept C167091322 @default.
- W2883207145 hasConcept C178790620 @default.
- W2883207145 hasConcept C183696295 @default.
- W2883207145 hasConcept C185592680 @default.
- W2883207145 hasConcept C192989942 @default.
- W2883207145 hasConcept C31972630 @default.
- W2883207145 hasConcept C41008148 @default.
- W2883207145 hasConcept C54355233 @default.
- W2883207145 hasConcept C62231903 @default.
- W2883207145 hasConcept C6350086 @default.
- W2883207145 hasConcept C68709404 @default.
- W2883207145 hasConcept C70721500 @default.
- W2883207145 hasConcept C86803240 @default.
- W2883207145 hasConcept C98763669 @default.
- W2883207145 hasConceptScore W2883207145C101810790 @default.
- W2883207145 hasConceptScore W2883207145C104317684 @default.
- W2883207145 hasConceptScore W2883207145C106131492 @default.
- W2883207145 hasConceptScore W2883207145C107673813 @default.
- W2883207145 hasConceptScore W2883207145C111350023 @default.
- W2883207145 hasConceptScore W2883207145C119857082 @default.
- W2883207145 hasConceptScore W2883207145C124101348 @default.
- W2883207145 hasConceptScore W2883207145C127413603 @default.
- W2883207145 hasConceptScore W2883207145C134018914 @default.
- W2883207145 hasConceptScore W2883207145C140779682 @default.
- W2883207145 hasConceptScore W2883207145C154945302 @default.
- W2883207145 hasConceptScore W2883207145C160941953 @default.
- W2883207145 hasConceptScore W2883207145C167091322 @default.
- W2883207145 hasConceptScore W2883207145C178790620 @default.
- W2883207145 hasConceptScore W2883207145C183696295 @default.
- W2883207145 hasConceptScore W2883207145C185592680 @default.
- W2883207145 hasConceptScore W2883207145C192989942 @default.
- W2883207145 hasConceptScore W2883207145C31972630 @default.
- W2883207145 hasConceptScore W2883207145C41008148 @default.
- W2883207145 hasConceptScore W2883207145C54355233 @default.
- W2883207145 hasConceptScore W2883207145C62231903 @default.
- W2883207145 hasConceptScore W2883207145C6350086 @default.
- W2883207145 hasConceptScore W2883207145C68709404 @default.
- W2883207145 hasConceptScore W2883207145C70721500 @default.
- W2883207145 hasConceptScore W2883207145C86803240 @default.
- W2883207145 hasConceptScore W2883207145C98763669 @default.
- W2883207145 hasLocation W28832071451 @default.
- W2883207145 hasOpenAccess W2883207145 @default.
- W2883207145 hasPrimaryLocation W28832071451 @default.
- W2883207145 hasRelatedWork W1904367196 @default.
- W2883207145 hasRelatedWork W1911715606 @default.
- W2883207145 hasRelatedWork W1969680556 @default.
- W2883207145 hasRelatedWork W1970556744 @default.
- W2883207145 hasRelatedWork W1983566611 @default.
- W2883207145 hasRelatedWork W2049508687 @default.
- W2883207145 hasRelatedWork W2163871517 @default.
- W2883207145 hasRelatedWork W2242337664 @default.
- W2883207145 hasRelatedWork W240310346 @default.
- W2883207145 hasRelatedWork W2554210752 @default.
- W2883207145 hasRelatedWork W2573984017 @default.
- W2883207145 hasRelatedWork W2613838074 @default.
- W2883207145 hasRelatedWork W2618684004 @default.
- W2883207145 hasRelatedWork W2770390205 @default.
- W2883207145 hasRelatedWork W2963227893 @default.
- W2883207145 hasRelatedWork W2970129733 @default.
- W2883207145 hasRelatedWork W2989744272 @default.
- W2883207145 hasRelatedWork W370226741 @default.
- W2883207145 hasRelatedWork W754399622 @default.
- W2883207145 hasRelatedWork W755733534 @default.
- W2883207145 isParatext "false" @default.
- W2883207145 isRetracted "false" @default.
- W2883207145 magId "2883207145" @default.
- W2883207145 workType "article" @default.