Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883222783> ?p ?o ?g. }
- W2883222783 endingPage "1479" @default.
- W2883222783 startingPage "1479" @default.
- W2883222783 abstract "With rapid urbanization and increase in car ownership, ambient noise pollution resulting from diversified sources (e.g., road traffic, railway, commercial services) has become a severe environmental problem in the populated areas in China. However, research on the spatial variation of noise pollution and its potential effects on urban residents’ mental health has to date been quite scarce in developing countries like China. Using a health survey conducted in Beijing in 2017, we for the first time investigated the spatial distributions of multiple noise pollution perceived by residents in Beijing, including road traffic noise, railway (or subway) noise, commercial noise, and housing renovation (or construction) noise. Our results indicate that there is geographic variability in noise pollution at the neighborhood scale, and road traffic and housing renovation/construction are the principal sources of noise pollution in Beijing. We then employed Bayesian multilevel logistic models to examine the associations between diversified noise pollution and urban residents’ mental health symptoms, including anxiety, stress, fatigue, headache, and sleep disturbance, while controlling for a wide range of confounding factors such as socio-demographics, objective built environment characteristics, social environment and geographic context. The results show that perceived higher noise-pollution exposure is significantly associated with worse mental health, while physical environment variables seem to contribute little to variations in self-reported mental disorders, except for proximity to the main road. Social factors or socio-demographic attributes, such as age and income, are significant covariates of urban residents’ mental health, while the social environment (i.e., community attachment) and housing satisfaction are significantly correlated with anxiety and stress. This study provides empirical evidence on the noise-health relationships in the Chinese context and sheds light on the policy implications for environmental pollution mitigation and healthy city development in China." @default.
- W2883222783 created "2018-08-03" @default.
- W2883222783 creator A5009185228 @default.
- W2883222783 creator A5045289553 @default.
- W2883222783 creator A5070640655 @default.
- W2883222783 creator A5078707158 @default.
- W2883222783 date "2018-07-13" @default.
- W2883222783 modified "2023-10-03" @default.
- W2883222783 title "A Multilevel Analysis of Perceived Noise Pollution, Geographic Contexts and Mental Health in Beijing" @default.
- W2883222783 cites W1496786474 @default.
- W2883222783 cites W1833691133 @default.
- W2883222783 cites W1976053123 @default.
- W2883222783 cites W1980165485 @default.
- W2883222783 cites W1983778395 @default.
- W2883222783 cites W1992485919 @default.
- W2883222783 cites W1996160252 @default.
- W2883222783 cites W1998192220 @default.
- W2883222783 cites W1999682711 @default.
- W2883222783 cites W2005494821 @default.
- W2883222783 cites W2005792051 @default.
- W2883222783 cites W2012601206 @default.
- W2883222783 cites W2016692185 @default.
- W2883222783 cites W2018750729 @default.
- W2883222783 cites W2020097375 @default.
- W2883222783 cites W2023715491 @default.
- W2883222783 cites W2026782236 @default.
- W2883222783 cites W2027105867 @default.
- W2883222783 cites W2034376192 @default.
- W2883222783 cites W2036186890 @default.
- W2883222783 cites W2042280720 @default.
- W2883222783 cites W2043882265 @default.
- W2883222783 cites W2053686012 @default.
- W2883222783 cites W2065633658 @default.
- W2883222783 cites W2065895166 @default.
- W2883222783 cites W2074231401 @default.
- W2883222783 cites W2076008204 @default.
- W2883222783 cites W2079196704 @default.
- W2883222783 cites W2079872183 @default.
- W2883222783 cites W2086776247 @default.
- W2883222783 cites W2088858163 @default.
- W2883222783 cites W2092950181 @default.
- W2883222783 cites W2104023838 @default.
- W2883222783 cites W2105589708 @default.
- W2883222783 cites W2107951288 @default.
- W2883222783 cites W2109286669 @default.
- W2883222783 cites W2111907511 @default.
- W2883222783 cites W2112512425 @default.
- W2883222783 cites W2112700322 @default.
- W2883222783 cites W2117784915 @default.
- W2883222783 cites W2123139375 @default.
- W2883222783 cites W2125102157 @default.
- W2883222783 cites W2137020868 @default.
- W2883222783 cites W2146778467 @default.
- W2883222783 cites W2150214068 @default.
- W2883222783 cites W2152983690 @default.
- W2883222783 cites W2163022143 @default.
- W2883222783 cites W2173112925 @default.
- W2883222783 cites W2175189196 @default.
- W2883222783 cites W2336142947 @default.
- W2883222783 cites W2340952060 @default.
- W2883222783 cites W2398764151 @default.
- W2883222783 cites W2512948170 @default.
- W2883222783 cites W2522454246 @default.
- W2883222783 cites W2545497304 @default.
- W2883222783 cites W2561208671 @default.
- W2883222783 cites W2604591112 @default.
- W2883222783 cites W2608280928 @default.
- W2883222783 cites W2754193229 @default.
- W2883222783 cites W2757886197 @default.
- W2883222783 cites W2765463298 @default.
- W2883222783 cites W2765916043 @default.
- W2883222783 cites W2771938996 @default.
- W2883222783 cites W27870929 @default.
- W2883222783 cites W2789068323 @default.
- W2883222783 cites W2789727163 @default.
- W2883222783 cites W2790222435 @default.
- W2883222783 cites W2790389900 @default.
- W2883222783 cites W2791883972 @default.
- W2883222783 cites W2792342309 @default.
- W2883222783 doi "https://doi.org/10.3390/ijerph15071479" @default.
- W2883222783 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6068638" @default.
- W2883222783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30011780" @default.
- W2883222783 hasPublicationYear "2018" @default.
- W2883222783 type Work @default.
- W2883222783 sameAs 2883222783 @default.
- W2883222783 citedByCount "67" @default.
- W2883222783 countsByYear W28832227832018 @default.
- W2883222783 countsByYear W28832227832019 @default.
- W2883222783 countsByYear W28832227832020 @default.
- W2883222783 countsByYear W28832227832021 @default.
- W2883222783 countsByYear W28832227832022 @default.
- W2883222783 countsByYear W28832227832023 @default.
- W2883222783 crossrefType "journal-article" @default.
- W2883222783 hasAuthorship W2883222783A5009185228 @default.
- W2883222783 hasAuthorship W2883222783A5045289553 @default.
- W2883222783 hasAuthorship W2883222783A5070640655 @default.
- W2883222783 hasAuthorship W2883222783A5078707158 @default.
- W2883222783 hasBestOaLocation W28832227831 @default.