Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883232434> ?p ?o ?g. }
- W2883232434 endingPage "A103" @default.
- W2883232434 startingPage "A103" @default.
- W2883232434 abstract "Context. Convolutional neural networks (CNNs) have been proven to perform fast classification and detection on natural images and have the potential to infer astrophysical parameters on the exponentially increasing amount of sky-survey imaging data. The inference pipeline can be trained either from real human-annotated data or simulated mock observations. Until now, star cluster analysis was based on integral or individual resolved stellar photometry. This limits the amount of information that can be extracted from cluster images. Aims. We aim to develop a CNN-based algorithm capable of simultaneously deriving ages, masses, and sizes of star clusters directly from multi-band images. We also aim to demonstrate CNN capabilities on low-mass semi-resolved star clusters in a low-signal-to-noise-ratio regime. Methods. A CNN was constructed based on the deep residual network (ResNet) architecture and trained on simulated images of star clusters with various ages, masses, and sizes. To provide realistic backgrounds, M 31 star fields taken from The Panchromatic Hubble Andromeda Treasury (PHAT) survey were added to the mock cluster images. Results. The proposed CNN was verified on mock images of artificial clusters and has demonstrated high precision and no significant bias for clusters of ages ≲3 Gyr and masses between 250 and 4000 M ⊙ . The pipeline is end-to-end, starting from input images all the way to the inferred parameters; no hand-coded steps have to be performed: estimates of parameters are provided by the neural network in one inferential step from raw images." @default.
- W2883232434 created "2018-08-03" @default.
- W2883232434 creator A5015205552 @default.
- W2883232434 creator A5038538392 @default.
- W2883232434 creator A5053050490 @default.
- W2883232434 date "2019-01-01" @default.
- W2883232434 modified "2023-10-17" @default.
- W2883232434 title "Deriving star cluster parameters with convolutional neural networks" @default.
- W2883232434 cites W1980769538 @default.
- W2883232434 cites W1991028833 @default.
- W2883232434 cites W2000070292 @default.
- W2883232434 cites W2019377328 @default.
- W2883232434 cites W2024305559 @default.
- W2883232434 cites W2044738244 @default.
- W2883232434 cites W2091847030 @default.
- W2883232434 cites W2117539524 @default.
- W2883232434 cites W2129760210 @default.
- W2883232434 cites W2140137154 @default.
- W2883232434 cites W2146944257 @default.
- W2883232434 cites W2153117529 @default.
- W2883232434 cites W2522000147 @default.
- W2883232434 cites W2581074048 @default.
- W2883232434 cites W2593003715 @default.
- W2883232434 cites W2604506260 @default.
- W2883232434 cites W2608820411 @default.
- W2883232434 cites W2616663801 @default.
- W2883232434 cites W2763944174 @default.
- W2883232434 cites W2768455873 @default.
- W2883232434 cites W3098166093 @default.
- W2883232434 cites W3098247218 @default.
- W2883232434 cites W3098610707 @default.
- W2883232434 cites W3099970198 @default.
- W2883232434 cites W3100222960 @default.
- W2883232434 cites W3103937431 @default.
- W2883232434 cites W3104422888 @default.
- W2883232434 cites W3105353888 @default.
- W2883232434 cites W3106226695 @default.
- W2883232434 cites W4298199758 @default.
- W2883232434 cites W4298284255 @default.
- W2883232434 cites W4299948648 @default.
- W2883232434 cites W4300976737 @default.
- W2883232434 cites W639708223 @default.
- W2883232434 doi "https://doi.org/10.1051/0004-6361/201833833" @default.
- W2883232434 hasPublicationYear "2019" @default.
- W2883232434 type Work @default.
- W2883232434 sameAs 2883232434 @default.
- W2883232434 citedByCount "13" @default.
- W2883232434 countsByYear W28832324342020 @default.
- W2883232434 countsByYear W28832324342021 @default.
- W2883232434 countsByYear W28832324342022 @default.
- W2883232434 countsByYear W28832324342023 @default.
- W2883232434 crossrefType "journal-article" @default.
- W2883232434 hasAuthorship W2883232434A5015205552 @default.
- W2883232434 hasAuthorship W2883232434A5038538392 @default.
- W2883232434 hasAuthorship W2883232434A5053050490 @default.
- W2883232434 hasBestOaLocation W28832324341 @default.
- W2883232434 hasConcept C121332964 @default.
- W2883232434 hasConcept C151730666 @default.
- W2883232434 hasConcept C153180895 @default.
- W2883232434 hasConcept C154945302 @default.
- W2883232434 hasConcept C199360897 @default.
- W2883232434 hasConcept C2779343474 @default.
- W2883232434 hasConcept C41008148 @default.
- W2883232434 hasConcept C43521106 @default.
- W2883232434 hasConcept C44870925 @default.
- W2883232434 hasConcept C48393594 @default.
- W2883232434 hasConcept C81363708 @default.
- W2883232434 hasConcept C86803240 @default.
- W2883232434 hasConcept C98444146 @default.
- W2883232434 hasConceptScore W2883232434C121332964 @default.
- W2883232434 hasConceptScore W2883232434C151730666 @default.
- W2883232434 hasConceptScore W2883232434C153180895 @default.
- W2883232434 hasConceptScore W2883232434C154945302 @default.
- W2883232434 hasConceptScore W2883232434C199360897 @default.
- W2883232434 hasConceptScore W2883232434C2779343474 @default.
- W2883232434 hasConceptScore W2883232434C41008148 @default.
- W2883232434 hasConceptScore W2883232434C43521106 @default.
- W2883232434 hasConceptScore W2883232434C44870925 @default.
- W2883232434 hasConceptScore W2883232434C48393594 @default.
- W2883232434 hasConceptScore W2883232434C81363708 @default.
- W2883232434 hasConceptScore W2883232434C86803240 @default.
- W2883232434 hasConceptScore W2883232434C98444146 @default.
- W2883232434 hasLocation W28832324341 @default.
- W2883232434 hasLocation W28832324342 @default.
- W2883232434 hasLocation W28832324343 @default.
- W2883232434 hasLocation W28832324344 @default.
- W2883232434 hasOpenAccess W2883232434 @default.
- W2883232434 hasPrimaryLocation W28832324341 @default.
- W2883232434 hasRelatedWork W1673850808 @default.
- W2883232434 hasRelatedWork W2093946497 @default.
- W2883232434 hasRelatedWork W2150883328 @default.
- W2883232434 hasRelatedWork W2175746458 @default.
- W2883232434 hasRelatedWork W2732542196 @default.
- W2883232434 hasRelatedWork W2760085659 @default.
- W2883232434 hasRelatedWork W2767651786 @default.
- W2883232434 hasRelatedWork W3093612317 @default.
- W2883232434 hasRelatedWork W3100942935 @default.
- W2883232434 hasRelatedWork W3105654201 @default.