Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883357100> ?p ?o ?g. }
- W2883357100 endingPage "1098" @default.
- W2883357100 startingPage "1098" @default.
- W2883357100 abstract "<ns4:p><ns4:bold>Background: </ns4:bold>The multi–slice computerized tomography (MSCT) is a medical imaging modality that has been used to determine the size and location of the stomach cancer. Additionally, MSCT is considered the best modality for the staging of gastric cancer. One way to assess the type 2 cancer of stomach is by detecting the pathological structure with an image segmentation approach. The tumor segmentation of MSCT gastric cancer images enables the diagnosis of the disease condition, for a given patient, without using an invasive method as surgical intervention.</ns4:p><ns4:p> <ns4:bold>Methods:</ns4:bold> This approach consists of three stages. The initial stage, an image enhancement, consists of a method for correcting non homogeneities present in the background of MSCT images. Then, a segmentation stage using a clustering method allows to obtain the adenocarcinoma morphology. In the third stage, the pathology region is reconstructed and then visualized with a three–dimensional (3–D) computer graphics procedure based on marching cubes algorithm. In order to validate the segmentations, the Dice score is used as a metric function useful for comparing the segmentations obtained using the proposed method with respect to ground truth volumes traced by a clinician.</ns4:p><ns4:p> <ns4:bold>Results:</ns4:bold> A total of 8 datasets available for patients diagnosed, from the cancer data collection of the project, Cancer Genome Atlas Stomach Adenocarcinoma (TCGASTAD) is considered in this research. The volume of the type 2 stomach tumor is estimated from the 3–D shape computationally segmented from the each dataset. These 3–D shapes are computationally reconstructed and then used to assess the morphopathology macroscopic features of this cancer.</ns4:p><ns4:p> <ns4:bold>Conclusions:</ns4:bold> The segmentations obtained are useful for assessing qualitatively and quantitatively the stomach type 2 cancer. In addition, this type of segmentation allows the development of computational models that allow the planning of virtual surgical processes related to type 2 cancer.</ns4:p>" @default.
- W2883357100 created "2018-08-03" @default.
- W2883357100 creator A5004643711 @default.
- W2883357100 creator A5016694557 @default.
- W2883357100 creator A5018560608 @default.
- W2883357100 creator A5025758108 @default.
- W2883357100 creator A5046084194 @default.
- W2883357100 creator A5050781344 @default.
- W2883357100 creator A5053621142 @default.
- W2883357100 creator A5068270337 @default.
- W2883357100 creator A5075780633 @default.
- W2883357100 creator A5079187000 @default.
- W2883357100 date "2018-10-09" @default.
- W2883357100 modified "2023-10-11" @default.
- W2883357100 title "Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer" @default.
- W2883357100 cites W1484996530 @default.
- W2883357100 cites W1488646374 @default.
- W2883357100 cites W1967729954 @default.
- W2883357100 cites W1987869189 @default.
- W2883357100 cites W1993402351 @default.
- W2883357100 cites W2033849769 @default.
- W2883357100 cites W2083765351 @default.
- W2883357100 cites W2083927153 @default.
- W2883357100 cites W2096380898 @default.
- W2883357100 cites W2097267373 @default.
- W2883357100 cites W2104813755 @default.
- W2883357100 cites W2121039635 @default.
- W2883357100 cites W2124632179 @default.
- W2883357100 cites W2141334965 @default.
- W2883357100 cites W2148637573 @default.
- W2883357100 cites W2159519445 @default.
- W2883357100 cites W2229412420 @default.
- W2883357100 cites W2524049908 @default.
- W2883357100 cites W2944924994 @default.
- W2883357100 cites W2952744873 @default.
- W2883357100 cites W4231021828 @default.
- W2883357100 cites W4239163673 @default.
- W2883357100 cites W4252559437 @default.
- W2883357100 doi "https://doi.org/10.12688/f1000research.14491.2" @default.
- W2883357100 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6234734" @default.
- W2883357100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30473775" @default.
- W2883357100 hasPublicationYear "2018" @default.
- W2883357100 type Work @default.
- W2883357100 sameAs 2883357100 @default.
- W2883357100 citedByCount "2" @default.
- W2883357100 countsByYear W28833571002021 @default.
- W2883357100 crossrefType "journal-article" @default.
- W2883357100 hasAuthorship W2883357100A5004643711 @default.
- W2883357100 hasAuthorship W2883357100A5016694557 @default.
- W2883357100 hasAuthorship W2883357100A5018560608 @default.
- W2883357100 hasAuthorship W2883357100A5025758108 @default.
- W2883357100 hasAuthorship W2883357100A5046084194 @default.
- W2883357100 hasAuthorship W2883357100A5050781344 @default.
- W2883357100 hasAuthorship W2883357100A5053621142 @default.
- W2883357100 hasAuthorship W2883357100A5068270337 @default.
- W2883357100 hasAuthorship W2883357100A5075780633 @default.
- W2883357100 hasAuthorship W2883357100A5079187000 @default.
- W2883357100 hasBestOaLocation W28833571001 @default.
- W2883357100 hasConcept C121608353 @default.
- W2883357100 hasConcept C126322002 @default.
- W2883357100 hasConcept C126838900 @default.
- W2883357100 hasConcept C146357865 @default.
- W2883357100 hasConcept C151730666 @default.
- W2883357100 hasConcept C154945302 @default.
- W2883357100 hasConcept C2779422922 @default.
- W2883357100 hasConcept C2779454504 @default.
- W2883357100 hasConcept C2781182431 @default.
- W2883357100 hasConcept C41008148 @default.
- W2883357100 hasConcept C71924100 @default.
- W2883357100 hasConcept C86803240 @default.
- W2883357100 hasConcept C89600930 @default.
- W2883357100 hasConceptScore W2883357100C121608353 @default.
- W2883357100 hasConceptScore W2883357100C126322002 @default.
- W2883357100 hasConceptScore W2883357100C126838900 @default.
- W2883357100 hasConceptScore W2883357100C146357865 @default.
- W2883357100 hasConceptScore W2883357100C151730666 @default.
- W2883357100 hasConceptScore W2883357100C154945302 @default.
- W2883357100 hasConceptScore W2883357100C2779422922 @default.
- W2883357100 hasConceptScore W2883357100C2779454504 @default.
- W2883357100 hasConceptScore W2883357100C2781182431 @default.
- W2883357100 hasConceptScore W2883357100C41008148 @default.
- W2883357100 hasConceptScore W2883357100C71924100 @default.
- W2883357100 hasConceptScore W2883357100C86803240 @default.
- W2883357100 hasConceptScore W2883357100C89600930 @default.
- W2883357100 hasFunder F4320325054 @default.
- W2883357100 hasLocation W28833571001 @default.
- W2883357100 hasLocation W28833571002 @default.
- W2883357100 hasLocation W28833571003 @default.
- W2883357100 hasOpenAccess W2883357100 @default.
- W2883357100 hasPrimaryLocation W28833571001 @default.
- W2883357100 hasRelatedWork W131310205 @default.
- W2883357100 hasRelatedWork W1763706555 @default.
- W2883357100 hasRelatedWork W1983233237 @default.
- W2883357100 hasRelatedWork W1994650590 @default.
- W2883357100 hasRelatedWork W2087936205 @default.
- W2883357100 hasRelatedWork W2315108431 @default.
- W2883357100 hasRelatedWork W2325556751 @default.
- W2883357100 hasRelatedWork W2409878917 @default.