Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883444927> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2883444927 abstract "We study the finite abelian groups K(,2)(o), where o denotes the ring of integers of a totally real number field. As a major tool we employ the Birch-Tate conjecture which states that the order of K(,2)(o) can be computed via the Dedekind zeta-function. The odd part of this conjecture has been proved for abelian fields as a consequence of the Mazur-Wiles work on the Main conjecture. After the preliminaries of chapter 1, we proceed in chapter 2 by deriving a formula for (zeta)(,F)(-1), where F denotes a totally real abelian number field. Using this formula we prove the congruence L (TBOND) 1 mod F:/Q for a class of large prime divisors L of #K(,2)(o). For the totally real subfields of /Q((zeta)p), p prime, we obtain that every prime q (GREATERTHEQ) 5 dividing the field degree F:/Q is a divisor of #K(,2)(o). Finally we show that a prime number p is irregular if and only if p divides the order of K(,2)(o(,F)), where F is the maximal totally real subfield of /Q((zeta)p). In chapter 3 we use results of J. Hurrelbrink and M. Kolster to prove the 2-part of the Birch-Tate conjecture for two families of abelian number fields, one of them being the totally real subfields of /Q((zeta)(,3)k), k (ELEM) /N. We compute the 2-parts of (omega)(,2)(F)(zeta)(,F)(-1) and show that the full cyclotomic fields involved have odd class numbers. In chapter 4 we combine recent results of J. Hurrelbrink and P. E. Conner with those of K. S. Brown on the values of the Dedekind zeta-function and obtain that the conditions 2(' F:/Q )(VBAR)(VBAR)#K(,2)(o) and (,2)(' F:/Q )(VBAR)(VBAR)(omega)(,2)(F)(zeta)(,F)(-1) are equivalent. Therefore the 2-part of the Birch-Tate conjecture holds for any--not necessarily abelian--totally real number field satisfying one (and hence both) of these conditions. Table 1 and table 2 contain the values of (VBAR)(omega)(,2)(F)(zeta)(,F)(-1)(VBAR) for totally real subfields of /Q((zeta)m), m (LESSTHEQ) 100. In table 3 we list all primes p < 10000 with the property that q = (p - 1)/2 is prime and 2 is a primitive root of q." @default.
- W2883444927 created "2018-08-03" @default.
- W2883444927 creator A5026862950 @default.
- W2883444927 date "2022-06-13" @default.
- W2883444927 modified "2023-09-28" @default.
- W2883444927 title "On K(,2) of Rings of Integers of Totally Real Number Fields (Birch-Tate, Steinberg, Class Number, Symbol, Zeta-Function)." @default.
- W2883444927 doi "https://doi.org/10.31390/gradschool_disstheses.4056" @default.
- W2883444927 hasPublicationYear "2022" @default.
- W2883444927 type Work @default.
- W2883444927 sameAs 2883444927 @default.
- W2883444927 citedByCount "0" @default.
- W2883444927 crossrefType "dissertation" @default.
- W2883444927 hasAuthorship W2883444927A5026862950 @default.
- W2883444927 hasBestOaLocation W28834449271 @default.
- W2883444927 hasConcept C10138342 @default.
- W2883444927 hasConcept C113429393 @default.
- W2883444927 hasConcept C114614502 @default.
- W2883444927 hasConcept C118615104 @default.
- W2883444927 hasConcept C121332964 @default.
- W2883444927 hasConcept C12657307 @default.
- W2883444927 hasConcept C127843967 @default.
- W2883444927 hasConcept C129844170 @default.
- W2883444927 hasConcept C136170076 @default.
- W2883444927 hasConcept C162324750 @default.
- W2883444927 hasConcept C164810661 @default.
- W2883444927 hasConcept C182306322 @default.
- W2883444927 hasConcept C184992742 @default.
- W2883444927 hasConcept C202444582 @default.
- W2883444927 hasConcept C203492994 @default.
- W2883444927 hasConcept C206343339 @default.
- W2883444927 hasConcept C2524010 @default.
- W2883444927 hasConcept C2780990831 @default.
- W2883444927 hasConcept C2983692738 @default.
- W2883444927 hasConcept C33923547 @default.
- W2883444927 hasConcept C62520636 @default.
- W2883444927 hasConcept C84114770 @default.
- W2883444927 hasConcept C9652623 @default.
- W2883444927 hasConceptScore W2883444927C10138342 @default.
- W2883444927 hasConceptScore W2883444927C113429393 @default.
- W2883444927 hasConceptScore W2883444927C114614502 @default.
- W2883444927 hasConceptScore W2883444927C118615104 @default.
- W2883444927 hasConceptScore W2883444927C121332964 @default.
- W2883444927 hasConceptScore W2883444927C12657307 @default.
- W2883444927 hasConceptScore W2883444927C127843967 @default.
- W2883444927 hasConceptScore W2883444927C129844170 @default.
- W2883444927 hasConceptScore W2883444927C136170076 @default.
- W2883444927 hasConceptScore W2883444927C162324750 @default.
- W2883444927 hasConceptScore W2883444927C164810661 @default.
- W2883444927 hasConceptScore W2883444927C182306322 @default.
- W2883444927 hasConceptScore W2883444927C184992742 @default.
- W2883444927 hasConceptScore W2883444927C202444582 @default.
- W2883444927 hasConceptScore W2883444927C203492994 @default.
- W2883444927 hasConceptScore W2883444927C206343339 @default.
- W2883444927 hasConceptScore W2883444927C2524010 @default.
- W2883444927 hasConceptScore W2883444927C2780990831 @default.
- W2883444927 hasConceptScore W2883444927C2983692738 @default.
- W2883444927 hasConceptScore W2883444927C33923547 @default.
- W2883444927 hasConceptScore W2883444927C62520636 @default.
- W2883444927 hasConceptScore W2883444927C84114770 @default.
- W2883444927 hasConceptScore W2883444927C9652623 @default.
- W2883444927 hasLocation W28834449271 @default.
- W2883444927 hasOpenAccess W2883444927 @default.
- W2883444927 hasPrimaryLocation W28834449271 @default.
- W2883444927 hasRelatedWork W1519097730 @default.
- W2883444927 hasRelatedWork W1987620073 @default.
- W2883444927 hasRelatedWork W2000286442 @default.
- W2883444927 hasRelatedWork W2048549394 @default.
- W2883444927 hasRelatedWork W2056418205 @default.
- W2883444927 hasRelatedWork W2319134944 @default.
- W2883444927 hasRelatedWork W2326703289 @default.
- W2883444927 hasRelatedWork W2329457535 @default.
- W2883444927 hasRelatedWork W2750635228 @default.
- W2883444927 hasRelatedWork W2883444927 @default.
- W2883444927 isParatext "false" @default.
- W2883444927 isRetracted "false" @default.
- W2883444927 magId "2883444927" @default.
- W2883444927 workType "dissertation" @default.