Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883461944> ?p ?o ?g. }
- W2883461944 endingPage "750" @default.
- W2883461944 startingPage "740" @default.
- W2883461944 abstract "Laminar flow condensation particle counters (CPCs) are uniquely sensitive detectors for aerosol particles in the nanometer size range (i.e. below 10 nm in size they can have single particle sensitivity). Their operation hinges upon the creation of supersaturation of a working fluid; particles exposed to supersaturated vapor grow by condensation to optically detectable sizes. The degree of supersaturation is fully controlled via differential rates of heat transfer and working fluid vapor mass transfer. Because of the Kelvin relationship governed vapor pressure of small particles, in all CPCs there is a critical size/cut-size (diameter), and particles smaller than this size do not grow and are not detected efficiently. While efforts have been made to control the CPC activation efficiency (i.e. the fraction of particles detected as a function of size), prior studies have not examined how differential heat and mass transfer in CPCs are governed by changes in gas composition. Here, we measure and model CPC activation efficiencies (with 1-butanol as the working fluid) in mixtures of gases of disparate thermophysical properties, namely helium and molecular nitrogen. Our experiments show that the activation efficiency of smaller particles (i.e. below 8 nm in the tested CPC) can be increased by adding a modest amount of helium to the aerosol (mole fractions near 0.20). This is expected based upon the increased Lewis number brought about by Helium addition, and supported by predictions of CPC activation efficiency based upon thermophysical property variable models of coupled heat, mass, and momentum transfer within the CPC condenser region. Interestingly, we find that when operating with a constant precision orifice diameter (choked flow), the activation efficiency for a given sub-10 nm particle diameter first increases with increasing Helium mole fraction and then decreases as the Helium mole fraction increases beyond 0.67. In comparison, experiments with constant mass transfer Peclet number (Pem = 77) show an increase in CPC activation efficiency up to a helium mole fraction of 0.67, but then the activation efficiency decreases more modestly beyond this helium mole fraction. We attribute these contrasting results to the increased flowrate through the instrument under constant orifice diameter conditions, which affects the performance of the CPC saturator. Finally, through modeling we show that the ability to enhance the activation efficiency of a CPC via a modest amount of helium addition is general, and can be applied with other heavy working fluids. The results presented in this study elucidate the importance of gas composition and Lewis number controlled differential heat and mass transfer rates on the performance of condensation based nanoparticle detectors." @default.
- W2883461944 created "2018-08-03" @default.
- W2883461944 creator A5041700205 @default.
- W2883461944 creator A5045107570 @default.
- W2883461944 creator A5074613722 @default.
- W2883461944 creator A5076202037 @default.
- W2883461944 date "2018-12-01" @default.
- W2883461944 modified "2023-10-16" @default.
- W2883461944 title "Differential heat and mass transfer rate influences on the activation efficiency of laminar flow condensation particle counters" @default.
- W2883461944 cites W1505020415 @default.
- W2883461944 cites W1830238928 @default.
- W2883461944 cites W1906932078 @default.
- W2883461944 cites W1966303964 @default.
- W2883461944 cites W1967994013 @default.
- W2883461944 cites W1974863411 @default.
- W2883461944 cites W1985009662 @default.
- W2883461944 cites W1990379124 @default.
- W2883461944 cites W1992630958 @default.
- W2883461944 cites W1996402404 @default.
- W2883461944 cites W1999423501 @default.
- W2883461944 cites W2003775310 @default.
- W2883461944 cites W2009088892 @default.
- W2883461944 cites W2013287933 @default.
- W2883461944 cites W2014315589 @default.
- W2883461944 cites W2018934942 @default.
- W2883461944 cites W2019429435 @default.
- W2883461944 cites W2019482837 @default.
- W2883461944 cites W2022596315 @default.
- W2883461944 cites W2023234953 @default.
- W2883461944 cites W2026275622 @default.
- W2883461944 cites W2026613268 @default.
- W2883461944 cites W2026796594 @default.
- W2883461944 cites W2030190859 @default.
- W2883461944 cites W2035443879 @default.
- W2883461944 cites W2042770322 @default.
- W2883461944 cites W2044969083 @default.
- W2883461944 cites W2047264114 @default.
- W2883461944 cites W2055553998 @default.
- W2883461944 cites W2060534730 @default.
- W2883461944 cites W2063194583 @default.
- W2883461944 cites W2063899318 @default.
- W2883461944 cites W2081221482 @default.
- W2883461944 cites W2086116722 @default.
- W2883461944 cites W2091597541 @default.
- W2883461944 cites W2093593911 @default.
- W2883461944 cites W2111480224 @default.
- W2883461944 cites W2111943637 @default.
- W2883461944 cites W2130773814 @default.
- W2883461944 cites W2153191658 @default.
- W2883461944 cites W2155987457 @default.
- W2883461944 cites W2395517506 @default.
- W2883461944 cites W2469887384 @default.
- W2883461944 cites W2549484123 @default.
- W2883461944 cites W2608017730 @default.
- W2883461944 cites W2776868581 @default.
- W2883461944 cites W4237746311 @default.
- W2883461944 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.002" @default.
- W2883461944 hasPublicationYear "2018" @default.
- W2883461944 type Work @default.
- W2883461944 sameAs 2883461944 @default.
- W2883461944 citedByCount "8" @default.
- W2883461944 countsByYear W28834619442019 @default.
- W2883461944 countsByYear W28834619442020 @default.
- W2883461944 countsByYear W28834619442021 @default.
- W2883461944 countsByYear W28834619442023 @default.
- W2883461944 crossrefType "journal-article" @default.
- W2883461944 hasAuthorship W2883461944A5041700205 @default.
- W2883461944 hasAuthorship W2883461944A5045107570 @default.
- W2883461944 hasAuthorship W2883461944A5074613722 @default.
- W2883461944 hasAuthorship W2883461944A5076202037 @default.
- W2883461944 hasConcept C111368507 @default.
- W2883461944 hasConcept C113196181 @default.
- W2883461944 hasConcept C121332964 @default.
- W2883461944 hasConcept C127313418 @default.
- W2883461944 hasConcept C147789679 @default.
- W2883461944 hasConcept C178790620 @default.
- W2883461944 hasConcept C184779094 @default.
- W2883461944 hasConcept C185592680 @default.
- W2883461944 hasConcept C187530423 @default.
- W2883461944 hasConcept C192562407 @default.
- W2883461944 hasConcept C200093464 @default.
- W2883461944 hasConcept C200447597 @default.
- W2883461944 hasConcept C2778517922 @default.
- W2883461944 hasConcept C2779345167 @default.
- W2883461944 hasConcept C43617362 @default.
- W2883461944 hasConcept C50517652 @default.
- W2883461944 hasConcept C51038369 @default.
- W2883461944 hasConcept C546029482 @default.
- W2883461944 hasConcept C76563973 @default.
- W2883461944 hasConcept C97355855 @default.
- W2883461944 hasConceptScore W2883461944C111368507 @default.
- W2883461944 hasConceptScore W2883461944C113196181 @default.
- W2883461944 hasConceptScore W2883461944C121332964 @default.
- W2883461944 hasConceptScore W2883461944C127313418 @default.
- W2883461944 hasConceptScore W2883461944C147789679 @default.
- W2883461944 hasConceptScore W2883461944C178790620 @default.
- W2883461944 hasConceptScore W2883461944C184779094 @default.
- W2883461944 hasConceptScore W2883461944C185592680 @default.