Matches in SemOpenAlex for { <https://semopenalex.org/work/W2883746119> ?p ?o ?g. }
- W2883746119 endingPage "1095" @default.
- W2883746119 startingPage "1088" @default.
- W2883746119 abstract "Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors' proposed method, they have used ISIC 2017 challenge dataset and PH 2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and PH 2 dataset, respectively." @default.
- W2883746119 created "2018-08-03" @default.
- W2883746119 creator A5016302052 @default.
- W2883746119 creator A5034386390 @default.
- W2883746119 creator A5075899121 @default.
- W2883746119 date "2018-07-30" @default.
- W2883746119 modified "2023-09-26" @default.
- W2883746119 title "Automated skin lesion segmentation of dermoscopic images using GrabCut and k‐means algorithms" @default.
- W2883746119 cites W1507875776 @default.
- W2883746119 cites W1581362113 @default.
- W2883746119 cites W1982704641 @default.
- W2883746119 cites W1995001633 @default.
- W2883746119 cites W2012875423 @default.
- W2883746119 cites W2023204574 @default.
- W2883746119 cites W2023794106 @default.
- W2883746119 cites W2029248817 @default.
- W2883746119 cites W2033694649 @default.
- W2883746119 cites W2035427371 @default.
- W2883746119 cites W2041987633 @default.
- W2883746119 cites W2058333183 @default.
- W2883746119 cites W2059238568 @default.
- W2883746119 cites W2064986900 @default.
- W2883746119 cites W2074317748 @default.
- W2883746119 cites W2083652081 @default.
- W2883746119 cites W2086553782 @default.
- W2883746119 cites W2087662809 @default.
- W2883746119 cites W2100234623 @default.
- W2883746119 cites W2121841037 @default.
- W2883746119 cites W2129534965 @default.
- W2883746119 cites W2129661341 @default.
- W2883746119 cites W2139888281 @default.
- W2883746119 cites W2142259554 @default.
- W2883746119 cites W2153400129 @default.
- W2883746119 cites W2169551590 @default.
- W2883746119 cites W2170383438 @default.
- W2883746119 cites W2247045784 @default.
- W2883746119 cites W2293574346 @default.
- W2883746119 cites W2346254524 @default.
- W2883746119 cites W2437694626 @default.
- W2883746119 cites W2564782580 @default.
- W2883746119 cites W2573630482 @default.
- W2883746119 cites W2599182484 @default.
- W2883746119 cites W2609625738 @default.
- W2883746119 cites W2623166637 @default.
- W2883746119 cites W2752273540 @default.
- W2883746119 cites W2082267659 @default.
- W2883746119 doi "https://doi.org/10.1049/iet-cvi.2018.5289" @default.
- W2883746119 hasPublicationYear "2018" @default.
- W2883746119 type Work @default.
- W2883746119 sameAs 2883746119 @default.
- W2883746119 citedByCount "53" @default.
- W2883746119 countsByYear W28837461192019 @default.
- W2883746119 countsByYear W28837461192020 @default.
- W2883746119 countsByYear W28837461192021 @default.
- W2883746119 countsByYear W28837461192022 @default.
- W2883746119 countsByYear W28837461192023 @default.
- W2883746119 crossrefType "journal-article" @default.
- W2883746119 hasAuthorship W2883746119A5016302052 @default.
- W2883746119 hasAuthorship W2883746119A5034386390 @default.
- W2883746119 hasAuthorship W2883746119A5075899121 @default.
- W2883746119 hasConcept C124504099 @default.
- W2883746119 hasConcept C153180895 @default.
- W2883746119 hasConcept C154945302 @default.
- W2883746119 hasConcept C16005928 @default.
- W2883746119 hasConcept C2988168687 @default.
- W2883746119 hasConcept C31972630 @default.
- W2883746119 hasConcept C41008148 @default.
- W2883746119 hasConcept C65885262 @default.
- W2883746119 hasConcept C71924100 @default.
- W2883746119 hasConcept C89600930 @default.
- W2883746119 hasConceptScore W2883746119C124504099 @default.
- W2883746119 hasConceptScore W2883746119C153180895 @default.
- W2883746119 hasConceptScore W2883746119C154945302 @default.
- W2883746119 hasConceptScore W2883746119C16005928 @default.
- W2883746119 hasConceptScore W2883746119C2988168687 @default.
- W2883746119 hasConceptScore W2883746119C31972630 @default.
- W2883746119 hasConceptScore W2883746119C41008148 @default.
- W2883746119 hasConceptScore W2883746119C65885262 @default.
- W2883746119 hasConceptScore W2883746119C71924100 @default.
- W2883746119 hasConceptScore W2883746119C89600930 @default.
- W2883746119 hasIssue "8" @default.
- W2883746119 hasLocation W28837461191 @default.
- W2883746119 hasOpenAccess W2883746119 @default.
- W2883746119 hasPrimaryLocation W28837461191 @default.
- W2883746119 hasRelatedWork W1522908000 @default.
- W2883746119 hasRelatedWork W1669643531 @default.
- W2883746119 hasRelatedWork W1700740617 @default.
- W2883746119 hasRelatedWork W2069711651 @default.
- W2883746119 hasRelatedWork W2117664411 @default.
- W2883746119 hasRelatedWork W2117933325 @default.
- W2883746119 hasRelatedWork W2171698391 @default.
- W2883746119 hasRelatedWork W2558375057 @default.
- W2883746119 hasRelatedWork W2739874619 @default.
- W2883746119 hasRelatedWork W1967061043 @default.
- W2883746119 hasVolume "12" @default.
- W2883746119 isParatext "false" @default.
- W2883746119 isRetracted "false" @default.
- W2883746119 magId "2883746119" @default.